Содержание книги

  1. Тепловые процессы, классификация, движущая сила. Виды переноса тепла. Способы интенсификации процессов.
  2. Перенос тепла за счет теплопроводности. Закон фурье. Конвективный теплообмен. Закон ньютона.
  3. Тепло- и хладоносители, используемые в пищевой промышленности. Требования предъявляемые к ним, их характеристика. Определение расхода.
  4. Теплообменные аппараты емкостного типа. Устройство,методика инженерного расчета.
  5. Теплообменный аппарат типа «труба в трубе». Устройство, методика инженерного расчета.
  6. Теплообменник змеевикового типа. Устройство, методика инженерного расчета.
  7. Кожухотрубные теплообменные аппараты. Устройство, методика инженерного расчета.
  8. Пластинчатые и спиральные теплообменники. Устройство, методика инженерного расчета.
  9. Назначение и способы ведения процесса выпаривания. Сравнительная оценка эффективности. Удельный расход греющего пара
  10. Однокорпусная вакуум – выпарная установка. Схема, принцип работы. Уравнения материального и теплового балансов.
  11. Простое выпаривание с компрессированием сокового пара. Расчет расхода греющего пара. Термокомпрессор. Устройство, принцип действия, расчет коэффициента инжекции.
  12. Движущая сила процесса выпаривания. Температурные потери в процессе выпаривания. Расчет полезной разности температур.
  13. Выпарной аппарат с естественной (принудительной) циркуляцией. Устройство, принцип действия.
  14. Многокорпусное выпаривание. Сравнительная оценка схем многокорпусных выпарных установок, выбор оптимального числа корпусов установки.
  15. Перенос массы в твердых телах (диффузия).
  16. Молекулярная диффузия. Первый закон фика. Дифференциальное уравнение конвективной диффузии. Второй закон фика.
  17. Линия равновесия. Материальный баланс процессов массопередачи. Уравнение рабочей линии.
  18. Материальный баланс и рабочая линия процесса
  19. Понятия кристаллизации и растворения. Статика и кинетика процессов. Растворимость. Степень пересыщения. Способы кристаллизации.
  20. Материальный и тепловой балансы кристаллизации. Аппаратурное оформление процесса.
  21. Материальный и тепловой баланс кристаллизации
  22. Область применения и механизм процесса экстракции. Способы ведения процесса. Аппаратурное оформление.
  23. Аппаратурное оформление процесса экстракции жидкость-жидкость.
  24. Сущность и область применения процесса адсорбции. Виды адсорбентов. Активность адсорбента. Способы десорбции.
  25. комбинированием указанных способов.
  26. Перегонка. Основные понятия. Способы перегонки
  27. Материальный баланс простой перегонки
  28. FхF = WхW + (F – W)( хр)ср. ,гдехр = (FхF – WхW)/(F – W).
  29. Материальный и тепловой балансы ректификационной установки
  30. Тепловой баланс ректификационной колонны
  31. Виды связи влаги с материалом. Критическая и равновесная влажность. Явление термовлагопроводности. Кривые сушки и скорости сушки.
  32. Материальный и тепловой балансы процесса конвективной сушки. Понятие удельного расхода воздуха.
  33. Основные параметры влажного воздуха.
  34. Здесь и далее теплоёмкости рассматриваются применительно к 1 кг сухой части воздуха и поэтому являются удельными величинами.


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тепловые процессы, классификация, движущая сила. Виды переноса тепла. Способы интенсификации процессов.



1 Тепловые процессы, классификация, движущая сила. Виды переноса тепла. Способы интенсификации процессов.

Тепловыми процессами называются такие технологические процессы, в которых материал нагревается или охлаждается, а скорость их протекания определяется скоростью подвода или отвода тепла.К тепловым процессам относятся:

нагревание – процесс повышения температуры материала путем подвода тепла;

охлаждение – процесс понижения температуры материала путем отвода тепла;

испарение – процесс перевода жидкости в парообразное состояние путем подвода тепла;

конденсация – процесс перевода пара в жидкое состояние путем отвода тепла.

Классификация тепловых процессов

Теплопроводность – это перенос тепла вследствие беспорядочного движения микрочастиц непосредственно соприкасающихся друг с другом. Тепло распространяется по всему телу со скоростью, зависящей от свойств тела и разности температур между отдельными его участками.

Конвективный перенос теплоты (конвекция) — процесс переноса теплоты от стенки к движущейся относительно нее жидкости (газу) или от жидкости (газа) к стенке. Таким образом, он обусловлен массовым движением вещества и происходит одновременно путем теплопроводности и конвекции дома батареи греют комнату

Тепловое излучение – перенос энергии с помощью электромагнитных волн инфракрасной части спектра..

Движущей силой всякого переноса массы или энергии является разность потенциалов, характерных для данного процесса. Эта разность является мерой удаленности системы от состояния равновесия.

Задачи интенсификации теплообмена обычно сводятся: - к уменьшению габаритов и массы теплообменных устройств, - к снижению температурного напора, т. е. к снижению температуры стенок при заданной температуре теплоносителя или к увеличению температуры теплоносителя при заданной температуре стенок.

Основными способами интенсификации конвективного теплообмена в теплообменных аппаратах являются: 1. Изменение термического сопротивления. 2. Изменение скорости потока. 3. Использование развитых поверхностей теплообмена путем оребрения и ошиповки. Оребрение поверхности применяется со стороны теплоносителя, обладающего меньшим коэффициентом 11 теплоотдачи. 5. Уменьшение геометрических размеров поверхности теплообмена. 6. Применение пластинчатых и спиральных теплообменников.



Поделиться:


Последнее изменение этой страницы: 2024-06-27; просмотров: 3; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.183.153 (0.005 с.)