Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Синдромы расстройств гемостазаСодержание книги
Поиск на нашем сайте
[КОАГУЛОПАТИИ, ДВС-СИНДРОМ]
Хотя интерес к процессам свертывания крови и гемостазу проявляется в медицинском мире издавна, учение о закономерностях коагуляции крови и ее патологии было разработано лишь в последние два-три десятилетия, когда были открыты факторы коагуляции и функции участников этого процесса — тромбоцитов, белков и др.
Физиология гемостаза
Гемостаз обеспечивает прекращение кровотечения из поврежденных сосудов. Процесс гемостаза сложен и состоит из нескольких последовательных стадий. Это прежде всего локальная вазоконстрикция в месте повреждения сосуда, развивающиеся затем специфические изменения функционального состояния тромбоцитов близ места повреждения, их агрегации, а также адгезии к эндотелиальной стенке сосуда в месте повреждения, к коллагеновым структурам и нитям в этой зоне и образование тромбоцитарного конгломерата (первичный гемостаз). На последующих этапах гемостаза (вторичный гемостаз) активируется каскадный процесс образования фибринового сгустка, укрепляющего и пропитывающего тромбоцитарный конгломерат, и фибринолитический процесс, направленный, с одной стороны, на ограничение самоподдерживающегося, цепного процесса гемокоагуляции, с другой — на лизис (растворение) гемостатической пробки, сыгравшей свою гемостатическую роль. После образования фибринового сгустка начинается активация фибробластических процессов. Вазоконстрикция, развивающаяся немедленно после повреждения сосудистой стенки или циркулярного повреждения сосуда, является непродолжительным (обычно не более 1 мин) процессом и оказывает незначительное влияние на интенсивность кровоизлияния из сосуда. Под влиянием вазоконстрикции просвет сосуда уменьшается, но не более чем на 1/4—1/4 исходного диаметра. Механизмы вазоконстрикции окончательно не выяснены. Вместе с тем известно, что главную роль в этом играет нейрогенное сокращение мышечных и клеточных элементов сосудистой стенки с участием гуморальных субстанций, выделяющихся из активированных тромбоцитов, таких как серотонин и тромбоксан A2. Тромбоциты. В неповрежденном сосуде, т. е. в отсутствие структурных нарушений эндотелиальной поверхности сосудистой стенки, активации кровяных компонентов коагуляции крови не происходит.
После повреждения сосуда тромбоциты приклеиваются к обнаженным субэндотелиальным структурам [Добровольский В. И., и др., 1984]. Адгезия тромбоцитов усиливается также фактором Вилленбранда, представляющим собой высокомолекулярный плазменный белковый компонент молекулы фактора VIII. Точный механизм влияния фактора Виллебранда на адгезию тромбоцитов пока не ясен, однако известно, что при болезни Виллебранда (дефицит этого фактора) адгезия тромбоцитов замедляется или даже отсутствует, а время кровотечения увеличивается. В зоне повреждения сосуда эритроциты высвобождают аденозин-5'-дифосфат (АДФ), который дополнительно активируег тромбоциты и ускоряет процесс адгезии и агрегации. Этот процесс носит название «реакция освобождения» [Born G. V. et al., 1976]. АДФ — главный стимулятор адгезии и агрегации. С увеличением числа эритроцитов и с повышением вязкости, крови способность тромбоцитов к адгезии существенно усиливается. Это обстоятельство лежит в основе возросшей тромбо-тической наклонности у больных с истинной красной полиците-мией [Bougthon В, J. et al., 1977]. После адгезии к субэндотелиальным структурам тромбоциты теряют дискоидную форму и выпускают длинные псевдоподии, которые прикасаются к поврежденной поверхности сосудов. Есть основание считать псевдоподии специфическими рецепторами тромбоцитарной мембраны к физиологическим, активаторам агрегации (АДФ, тромбин и коллаген). Названные субстанции начинают контрактильный процесс высвобождением Са2+ из мест его хранения и активацией тромбоцитарного актомиозина и тромбастенина. Изменения конфигурации и формы поверхности мембраны тромбоцитов является основным моментом активации ими коагуляционных процессов в крови; [Schick P. К. et al., 1976]. В зависимости от обстоятельств судьба агрегированных тромбоцитов может быть двоякой: они могут потерять способность поддерживать агрегированное состояние и распасться, но могут также превратиться в необратимые большие сгустки. Повышенный уровень цитоплазматического Са2+ активирует фосфолипазу аз, которая способствует освобождению жирных, кислот из клеточных фосфолипидов. Из них наиболее важной в процессах гемокоагуляции является арахидоновая, так как она служит основным компонентом при формировании тромбоксана А2 — одного из мощнейших стимуляторов тромбоцитарной агрегации и вазоконстрикции [Machin S. J., 1983]. Затем, тромбоцитарные лакуны и альфа-гранулы секретируют эти субстанции в зону повреждения сосуда и образования будущего сгустка вместе с АДФ. Последний проявляет себя как химический медиатор, способствующий агрегации. Тромбоциты выделяют также локальный вазоконстриктор, серотонин, катехол-амины и митогенный фактор, стимулирующий экстренную пролиферацию гладкой мускулатуры в зоне повреждения сосуда. При этом продуцируется ряд лизосомных ферментов [Ross R. et al., 1974]. В процессах агрегации тромбоцитов участвуют также другие субстанции белковой природы, например бета-тромбоглобулин, биологическая активность которого мало изучена, и фактор 4 тромбоцитов. Обе эти субстанции могут быть определены радиоиммунным методом [Ludlam С. А., 1975; Moore S. et al., 1975].
Другой адтиватор агрегации, способствующий усилению «реакции освобождения» АДФ и тромбоцитарных факторов,— это тромбин [Кузник Б. И. и др., 1971; Баркаган 3. С., 1980, и др.]. Более подробно о нем говорится дальше. Плазменные факторы коагуляции. Изучение поражающего воображение процесса образования сгустка крови длится уже более 100 лет. Первоначально исследование этого вопроса было связано с именами русского ученого профессора Юрьевского университета А. А. Шмидта (1895), указавшего, что суть процесса образования сгустка состоит в превращении под влиянием фермента растворимого фибриногена в нерастворимый фибрин, и чешского ученого П. Моравитца (1905), который расшифровал и обобщил ход процесса образования фибрина и указал на роль в этом процессе образующегося в крови фермента тромбина. Была создана общая схема превращения фибриногена в фибрин под влиянием тромбина, образующегося в свою очередь в результате действия фермента тромбокиназы (известной теперь как фактор Ха) на протромбин. В общих чертах она справедлива и в настоящее время. В дальнейшем, главным образом в 50-х годах XX столетия, было открыто множество других участников процесса гемокоагуляции. В результате в 60—70-х годах удалось построить схему коагуляционного процесса, в которой нашли место все известные к этому времени факторы [McFarlan R., 1956]. Прежде чем рассмотреть современные схемы осуществления коагуляции крови, остановимся на номенклатуре участников этого процесса. Номенклатура. Для обозначения плазменных факторов коагуляции в Международной номенклатуре (согласно решению Международной комиссии по тромбозу и гемостазу) используют римские цифры, которыми обозначают неактивированное состояние фактора, т. е. профермент (табл. 6.) Активированное состояние фактора (фермент) обозначают добавлением к римской цифре буквы «а», например: фактор II — протромбин, фактор Па—тромбин. Для обозначения тромбоцитарных факторов используют арабскую нумерацию, например: «фактор 4 тромбоцитов». Иногда факторы обозначают словесно, в основном по месту, где они образуются, или по их основной функции, например тканевый тромбопластин (фактор Ш),аксе-лерирующий фактор (V), фибринстабилизирующий фактор (XIII) и т. д. Встречаются также собственные имена (фамилии) в обозначении факторов, например: фактор Стюарта — Прауэра (X), фактор Хагемана (XII), фактор Кристмаса (IX). При этом используют фамилии больных, у которых впервые был обнаружен генетический дефицит обозначаемого фактора. Могут встретиться также упоминания о факторах Фитцжеральда (высокомолекулярный кининоген) и Флетчера (прекалликреин), которые не получили цифрового обозначения. Они являются компонентами общих ферментных систем, например калликреин-кининовой, но как аутосомные компоненты входят в антигемофильный глобулин (фактор VIII).
Основой коагуляционного механизма, состоящего из многокомпонентных ферментных и проферментных систем, кофакторов и ингибиторов, является последовательная ступенчатая активация процесса двумя основными путями: так называемым внутренним путем (механизмом), который начинается контактом факторов свертывания крови с поврежденной отрицательно заряженной поверхностью сосудистого эндотелия, и внешним путем (механизмом), начинающимся с освобождения тканевого тромбопластина из поврежденных клеток. Этот сложный ферментативный процесс ведет к образованию фибрина, оседающего затем на тромбоцитарной пробке и образующего тромб. Весь процесс образования фибринового сгустка отражен на схеме 6.1.
Таблица 6.1. Номенклатура плазменных факторов гемокоагуляции
Схема 6.1. Механизмы свертывания крови1 Сплошными стрелками обозначено превращение, пунктирными — активация
Внутренний путь процесса активации образования сгустка начинается с того, что комплекс, состоящий из фактора XII и высокомолекулярного кининогена, связанных с помощью прекалликреина [Веремеенко К. Н., 1977], адсорбируется на поверхности отрицательно заряженной поврежденной поверхности эндотелия, активирует фактор XI [Thompson R. Е., 1977]., превращая его из профермента в фермент (Х1а). Затем следует серия превращений инертных предшественников (фактор IX + фактор VIII, активированные фосфолипидом и Са2+) в активные сериновые протеазы, ведущие к формированию в конечном счете фибрина.
Появление в результате повреждения сосудистой стенки ряда тканевых субстратов (клеточные соки) активирует внешний путь коагуляции крови. Процесс начинается с конверсии фактора VII под влиянием тканевого тромбопластина в фактор Vila, т. е. в фермент, который в комплексе с Са2+ и фосфолипидами активирует затем фактор X. Участие фосфолипидов в процессах активации фактора X происходит с обеих сторон — как по внешнему, так и по внутреннему пути (см. схему 6.1). Происхождение фосфолипидов преимущественно тромбоцитарное: на поверхности тромбоцитов в зоне повреждения образуются мицеллы, содержащие фосфолипиды. Фосфолипиды ускоряют процесс активации фактора IX и превращения его из профермента в фермент (1Ха). Последний в комплексе с анти-гемофильным глобулином (VIII), Са2+ и фосфолипидами активирует фактор X. Как внешний, так и внутренний механизмы и пути каскадно-комплексных превращений направлены на активацию одного из центральных компонентов коагуляционного процесса — фактора X, который затем в комплексе с акселелирующим фактором V, Са2+ и тромбоцитарными фосфолипидами превращает протромбин в тромбин (см. схему 6.1). В норме в плазме крови тромбина нет. Он появляется лишь тогда, когда в результате повреждения сосудистой стенки запущен механизм образования сгустка крови. Наблюдения за больными, страдающими наследственным дефицитом или недостаточностью фактора X (болезнь Стюарта—Прауэра), показали, что отсутствие в крови этой сериновой протеазы блокирует оба (внешний и внутренний) пути активации механизма свертывания крови, в результате чего становится невозможным образование протромбиназной активности. Однако в норме активированный фактор X, сам по себе обладает довольно слабой протромбиназной активностью. Его эффект повышается буквально в тысячи раз акселелирующим фактором V (возможно, при содействии акселерирующего фактора VI). Аналогично этому активирующее влияние фактора IX на фактор X на 3—4 порядка усиливается действием антиге-мофильного глобулина (фактор VIII). На этом основании в последнее время факторы свертывания крови принято делить на две большие группы — ферментную, к которой относятся факторы XII, XI, IX, VII, X и II, и неферментную — факторы I, V и VIII [Баркаган 3. С., 1980].
|
||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 203; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.175.83 (0.013 с.) |