Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Эндокринная регуляция метаболизмаСодержание книги
Поиск на нашем сайте
Обширность и характер повреждения являются определяющими моментами метаболических и эндокринных сдвигов, которые наступают после травмы и хирургических вмешательств. В настоящее время нет возможности количественно оценить этот фактор, однако, исходя из характера повреждения, можно приблизительно прогнозировать выраженность и направленность этих изменений. Различают четыре фазы развития метаболического ответа на вмешательство [Moore F., 1968]. Точные границы между этими фазами, а также длительность их вариабельны и зависят от ряда факторов, главным образом от исходного состояния организма и характера заболевания или травмы. Первая фаза — фаза повреждения, или «адренокортикоидная фаза». После травмы или больших вмешательств длительность ее составляет 2—4 дня. Эндокринные и метаболические изменения связаны в основном с влиянием адренергических и адренокортикоидных гормонов и характеризуются выраженным катаболизмом. Наиболее важным метаболическим признаком является отрицательный азотистый баланс даже при достаточном покрытии энергетических и белковых потребностей. Вторая фаза — фаза гормонального разрешения — выявляется между 3-м и 7-м днем заболевания и продолжается 2—3 дня. Может проявляться очевидным улучшением состояния больного и исчезновением всех гормональных сдвигов, однако азотистый баланс может оставаться отрицательным. Третья фаза — фаза восстановления мышечной массы — характеризуется преобладанием анаболизма и положительным азотистым балансом в сочетании с клиническими признаками восстановления объема и силы мышц, длится 2—5 нед после травмы или крупной операции. Четвертая фаза — фаза накопления жира — может продолжаться несколько месяцев, характеризуется восстановлением запасов жира в организме до исходного уровня. Многочисленные исследования показали, что метаболическая реакция на травму опосредуется прежде всего гуморальными механизмами [Moore F., 1959]. Эндокринная гиперактивность проявляется особенно четко в первой фазе [Maxwell М. Н., Kleman С. R., 1972]. В фазе повреждения прежде всего происходит активация мозгового слоя надпочечников и симпатической нервной системы, что проявляется повышением уровня катехоламинов в крови и моче.
В периоде стресса любого происхождения и немедленно после него повышается уровень практически всех гормонов надпочечников — глюкокортикоидов и минералокортикоидов. Существенно возрастает концентрация свободного кортизола в плазме [Johnston I. D. А., 1974]. Эта реакция совпадает с уменьшением экскреции Na+ и воды. В том же периоде можно отметить исключительно высокое содержание альдостерона в крови (иногда оно увеличивается в 10 раз) [Casey A. H. et al., 1957]. Существует мнение [Johnston I. D., 1974], что введение перед операцией спиронолактона — антагониста альдостерона — увеличивает экскрецию Na+ в послеоперационном периоде. Однако в дальнейшем эта точка зрения была подвергнута сомнению. Наш опыт использования одного из антагонистов альдостерона — альдактона, который мы вводим внутривенно по 200—300 мг/сут, свидетельствует об увеличении натрийуреза в послеоперационном периоде. При выраженной олигурии почечного происхождения альдактон рекомендуется применять в сочетании с салуретиками. Вопрос о первичной роли альдостерона в регуляции натрий-уреза, в частности о задержке Na+ в послеоперационном периоде, окончательно не решен. У детей с нарушением продукции альдостерона имеется тенденция к реабсорбции почти всего Na+, фильтруемого в клубочковом аппарате. С другой стороны, у больных, перенесших адреналэктомию и поддерживаемых только введением расчетных доз глюкокортикоидов, задержка Na+ в послеоперационном периоде невелика. В настоящее время известно, что альдостерон является одним из главных факторов задержки Na+ после стрессовых ситуаций, в том числе после операций и травмы. Однако нельзя исключить, что в его отсутствие эта роль переходит к каким-то другим факторам. Установлено, что в регуляции экскреции Na+ после солевой нагрузки принимают участие малоизвестные факторы, которые названы натрийурическими гормонами и «третьим фактором». Установлен очень короткий срок их существования и высказано предположение, что они образуются в мозге. В дальнейшем было выяснено, что местом их продукции являются почки, поскольку внутриартериальное введение экстракта кортикального слоя почек давало натрийурический эффект [Mills J., 1970]. Выраженность натрийуреза зависит от интенсивности почечного кровотока. Периодические окклюзии почечных вен могут усилить экскрецию Na+. Механизм, регулирующий натрийурез, зависит также от характера распределения кровотока между поверхностными и глубокими кортикальными нефронами.
Под влиянием травмы происходит активация функции щитовидной железы [Johnston I. D. А., 1974]. Усиление катаболизма белков в стрессовых ситуациях обусловлено главным образом высоким уровнем тиреоидных гормонов (свободный тироксин и трийодтиронин). Однако документировать это повышение в клинических условиях обычно не представляется возможным. Почки под влиянием стресса, травмы и операции способны выделять ряд других вазоактивных веществ, которые можно отнести к гормональным [Bevan H. В. et al., 1973J. Среди них одно из первых мест по значимости занимает ренин, высвобождающийся при нарушении почечного кровообращения и ишемии. Ангиотензин-II — другой важнейший гормон, высвобождаемый непосредственно корковым веществом почки и оказывающий воздействие непосредственно на сосудистую систему почек. Основными функциями этого гормона, физиологическая активность которого связана с ренином, являются регуляция распределения кровотока между поверхностными и юкстамедуллярными нефронами и, следовательно, регуляция натрийуреза. Продукция этих гормонов, как установлено в многочисленных клинических наблюдениях, значительно повышается при критических состояниях. Наряду с этими гормонами одним из важнейших факторов регуляции концентрационной и экскреторной функции почек является АДГ, выделяемый задней долей гипофиза. Концентрация АДГ, равная в норме 0,05—6 мкг/мл, под влиянием травмы повышается в 10—100 раз. Основной механизм действия АДГ заключается в задержке выведения водной фракции мочи, называемой свободной водой. В норме концентрация поваренной соли в моче составляет 0,18%, т. е. тоничность мочи в 5 раз ниже тоничности плазмы. Тормозящее влияние АДГ распространяется главным образом на выделение именно водной фракции мочи. Таким образом, метаболическая реакция на травму или любое вмешательство выражается прежде всего в снижении способности организма выводить свободную воду в связи с повышением уровня АДГ в крови. Пусковым моментом повышения секреции АДГ является раздражение гипоталамических осморецепторов при повышении осмоляльности плазмы, обычно возникающей при травме и операции. После операции повышенный уровень АДГ сохраняется в течение нескольких дней и начинает постепенно падать на 3—4-й день. Как показывает практика, в послеоперационном периоде антидиуретический эффект значительно снижается, если больной получает жидкостей примерно на 2 л больше измеренных потерь. Действие АДГ в послеоперационном периоде в ряде случаев проявляется длительно, несмотря на то, что развивается гипотоничность плазмы в связи с увеличением объема внеклеточного пространства и перераспределением Na+ (повреждения натриевого насоса). Этот эффект, пока еще плохо объяснимый теоретически, наиболее отчетливо проявляется в течение первых 2—3 сут после операции. В фазе восстановления возобновляется осморецепторный контроль секреции АДГ и вновь налаживается адекватный диурез. В I фазе критического состояния наблюдается повышение секреции глюкокортикоидов как результат освобождения АКТГ. Это легко документируется заметным повышением уровня глюкокортикоидов в плазме в течение 24—48 ч, а также увеличением экскреции 17-оксикортикоидов с мочой в течение нескольких дней и внезапным снижением количества эозинофилов в крови в течение 2—4 сут после операции. Не менее важна гиперпродукция АКТГ, сопровождающая любое обширное повреждение. Нервные импульсы из области повреждения (независимо от его характера) поступают в гипоталамус, где вызывают образование кортикотропиносвобождающего фактора [Krulich L., McCann S. M., 1966], который стимулирует секрецию АКТГ. Уровень АКТГ повышается немедленно после травмы или начала большой операции и продолжается 2—4 сут, если даже травмирующий фактор устранен и послеоперационный период протекает без осложнений. Секреция АКТГ продолжается, а иногда и усиливается при выраженном шоке, сепсисе, обширном некрозе тканей.
Еще в 1914 г. W. Cannon обратил внимание на то, что в стрессовых ситуациях активируется деятельность сердечно-сосудистой системы. Он связал этот эффект с высоким уровнем адреналовых гормонов. Действительно, как было установлено позже, уровень адреналина в крови возрастает в десятки раз. Еще более выражено повышение концентрации норадреналина. При этом в моче определяется большое количество метаболитов этих гормонов. Адреналин стимулирует метаболизм пурино-вых соединений и в значительной степени обусловливает отрицательный азотистый баланс. Поскольку адреналин обеспечивает увеличение печеночного кровотока, он не только повышает уровень глюкозы в крови, но и стимулирует метаболизм пирувата и лактата в печени.
Энергетический метаболизм
Организм может находиться в стационарном состоянии при соблюдении четырех основных метаболических условий. 1. Энергетическое обеспечение должно быть количественно достаточным, чтобы покрыть потребность организма в целом и каждой ткани в отдельности. 2. Обеспечение углеводами должно быть количественно и качественно достаточным для покрытия потребностей углеводо-зависимых тканей, а именно мозга, эритроцитов и лейкоцитов. 3. Обеспечение азотом должно быть количественно достаточным, чтобы беспрепятственно осуществлялся облигатный синтез белков. 4. Обеспечение водой и солями должно быть количественно и качественно достаточным, чтобы покрыть ежедневные облигатные их потери. Очевидно, что соблюдение этих условий возможно лишь при беспрепятственном осуществлении нормальных биохимических взаимодействий между субстратами (например, при возможности взаимных конверсии глюкозы в жиры, жиров в глюкозу, белков в глюкозу и т. д.) и нормальной нейроэндокринной регуляции этих процессов.
Все метаболические процессы в клетках либо производят энергию (экзергонные реакции), либо потребляют ее (эндергонные реакции). Энергия, необходимая для осуществления всех биологических процессов в нефотосинтезирующих клетках, образуется в результате изменения структуры некоторых органических молекул [Lehninger A.L., 1975]. В основном это энергия, получаемая при трансформации фосфатных связей пуриновых нуклеотидов и других молекул с фосфатными связями, таких как фосфагены. По данным Lehninger A. L. (1972), максимум энергии может быть получен клеткой при гидролизе фосфатных связей аденозин-5-трифосфата (АТФ) или его предшественников в аденозиндифосфат (АДФ) или аденозинмонофосфат (АМФ). При этом клетки получают на 1 моль от 36800 до 40600 Дж энергии, которая может быть использована для других биологических процессов. Образование этих соединений с высокоэнергетическими фосфатными группами — переносчиками энергии является обычно результатом переноса восстанавливающих эквивалентов из субстрата с восстановлением НАД, флавопротеинов и других коферментов. Вслед за этим происходит сопряженное окислительное фосфорилирование аденозин-5-дифосфата в митохондриях. Хотя АТФ является источником химической энергии во всех нормально функционирующих клетках, он не должен рассматриваться как резервуар энергии. Внутриклеточная концентрация АТФ весьма мала, изменчива и быстро истощаема. Действительные резервуары энергии (фосфагены), такие как фосфокреатин, существуют в самой клетке. Эти резервуары аккумулируют высокоэнергетические фосфатные связи, когда концентрация АТФ высока, и отдают их, когда концентрация АТФ снижается. Находящиеся в клетке адениннуклеотиды обеспечивают клетку высокочувствительным механизмом, осуществляющим регуляцию энергопотребляющих и энергопроизводящих процессов. D. Е. Atkinson (1966) предложил концепцию энергетического заряда (ЕС) для объяснения регуляторных механизмов внутриклеточной энергии, согласно которой: ЕС= (АТФ+0.5АДФ)/АТФ+АДФ+АМФ Нормальный показатель энергетического заряда (равный единице) свидетельствует о хорошей сбалансированности энергопроизводящих и энергопотребляющих процессов. Увеличение показателя энергетического заряда свидетельствует о преобладании энергопродуцирующих процессов над энергопотребляющими и характеризует состояние благополучия в клетке. Усиление энергопотребляющих процессов и преобладание их над энергообразующими указывают на высокий риск гибели клетки. Клинического значения это уравнение, разумеется, не имеет, поскольку невозможно количественно определить содержание фосфатных соединений ни в клетке, ни в ткани. Большинство энергопродуцирующих процессов происходит с участием углеводов, жиров и белков. Каждый из названных субстратов (последние — после цикла превращения в углеводы, называемого глюконеогенезом) включается в процесс энергообразования после изменения их структуры в цепи катаболических реакций, именуемых гликолизом. На конечных стадиях гликолиза карбоновые фрагменты включаются в митохондриальный цикл трикарбоновых кислот, где происходит процесс их последовательного окисления. При этом финальная часть процесса в цикле трикарбоновых кислот (независимо от того, каков был исходный материал — углеводы, жиры или белки) связана с образованием ацетил-кофермента А (СоА). Из каждой молекулы СоА в цикле Кребса образуются две молекулы СОа, три молекулы NAD, его восстановленной формы — NADH, одна молекула флавинадениннуклеотида (FAD) и одна молекула гуанозин-5’-трифосфата [Wite A. et al., 1973].
В отличие от углеводов и липидов аминокислоты могут включаться в цикл Кребса на любом его этапе [Gann D. S. et al., 1987]. Метаболизм углеводов. В развитых странах 40—50%, калорического обеспечения составляют углеводы. При этом 1/3общего поступления углеводов составляет фруктоза, которая получается при гидролизе сахарозы (вместе с глюкозой) и содержится во фруктах. В развивающихся странах основным потребляемым углеводным субстратом является крахмал, который расщепляется на две молекулы глюкозы. Таким образом, главным углеводным субстратом, поступающим в организм после ферментативных превращений и всасывания в кишечнике, является глюкоза. Существуют три пути превращения поступающей в организм глюкозы: 1) немедленное включение в энергетический метаболизм; 2) превращение в гликоген для долгосрочного хранения; 3) превращение в жир. Поскольку первый путь представляет собой хорошо известный гликолитический путь Эмбдена — Мейергофа с переходом в цикл Кребса, остановимся на втором и третьем путях. Общее единовременное содержание углеводов в организме не превышает 1,5 кг [Молчанов Н. П., 1955]. Точная схема распределения глюкозы в тканях, средах и органах после приема пищи неизвестна. Если поступление глюкозы невелико, то большая часть ее окисляется. При достаточном поступлении часть ее немедленно превращается в гликоген: и жир. Гликоген откладывается главным образом в печени (100— 250 г) и в мышцах с участием фермента гликогенсинтетазы, которая приобретает активность только в присутствии инсулина. Общий гликогеновый пул организма не превышает 400—450 г. Превращение глюкозы в жир практически не ограничено. Емкостями для жира являются печень и жировая ткань. При этом печеночная емкость невелика, тогда как жировая ткань может принимать жир в известном смысле безгранично. Глюкоза, поступающая в организм в избытке, превращается в три-глицериды, часть которых затем высвобождается в кровь в виде липопротеинов для окисления их непосредственно в скелетных мышцах. Другая часть липопротеинов гидролизуется с участием липопротеинлипазы и превращается в свободные жирные кислоты, накапливающиеся в периферических тканях. Процесс гидролиза липопротеинов и откладывания жира в виде триглицеридов в жировой ткани возможен лишь в анаболической фазе метаболизма, т. е. тогда, когда поступление углеводов преобладает над их расходом. Этот процесс также происходит с участием инсулина. Жировая ткань в отличие от печени не может освобождать триглицериды для использования их в метаболизме. Для этого существует механизм медленного гидролиза триглицеридов в глицерол и свободные жирные кислоты, которые и являются источником энергии в период голодания. Таким образом, метаболизм глюкозы теснейшим образом связан с метаболизмом жиров. Минимальная потребность в углеводах составляет 100 г/сут [Shenkin A., 1983]. В норме углеводы после гидролиза и желудочно-кишечном тракте всасываются в кровь, где поддерживается довольно постоянный уровень глюкозы — 0,8—1,2 г/л (4,44—6,66 ммоль/л). Часть гидролизованных углеводов расходуется на синтез аминокислот с использованием эндогенного азота. Полное окисление молекулы глюкозы до СО2 и воды дает энергетический выход, эквивалентный энергии 38 молекул высокоэнергетических фосфатов [Amaral J. F., Caldwell M. D., 1988]. При этом усвоение 1 г углеводов обеспечивает около 4 ккал (16,75 кДж). Таким образом, общее энергетическое содержание запасов углеводов у человека составляет всего около 1500 ккал (6280 кДж). В условиях агрессии одномоментно мобилизуется только 36% гликогена печени [Теодореску-Эксарку И., 1972], что покрывает энергетические нужды организма лишь в течение нескольких часов. Следовательно, этих запасов едва хватает даже на 1 сут. В стрессовых ситуациях и при критических состояниях метаболизм углеводов связан с действием медиаторов и гормонов, уровень которых в крови в этом периоде повышается. Под влиянием катехоламинов в печени и мышцах происходит интенсивный лизис гликогена с образованием глюкозы, концентрация которой в крови увеличивается. Мобилизации запасов гликогена способствует также повышение в крови уровня глюкагона — гормона поджелудочной железы. Эти факторы являются главными в механизме гипергликемии, возникающей вовремя агрессии и в постагрессивном периоде. Одновременно снижаются синтез и секреция инсулина. Угнетение функции инсулярного аппарата непосредственно связано с воздействием адреналина. Запасы углеводов в стрессовых ситуациях истощаются очень быстро (в пределах 10—14 ч). Затем включается другой механизм поддержания уровня глюкозы в крови и, следовательно, самой возможности энергетического обмена — глкжонеогенез, представляющий собой образование глюкозы из белков организма (после их дезаминирования в печени), мобилизованных жиров (после превращения их в глицерол) и частично из молочной и пировиноградной кислот (рис. 3.1). Все это обусловливает высокий уровень глюкозы в крови, симулирующий диабетический синдром, приспособительный механизм которого в этих состояниях направлен на покрытие высоких энергетических потребностей. Острые критические состояния, вызванные комбинированной травмой, тяжелым ожогом или инфекционным процессом, сопровождаются гипергликемией (до 4—7 г/л, т. е. приблизительно до 22—39 ммоль/л) и нередко кратковременной (7—10 ч) глюкозурией.
Рис. 3.1. Общая схема метаболизма.
Одной из важнейших функций углеводов в организме является подавление кетоза. В определенном смысле можно считать, что углеводы находятся в конкуренции с наличными («складированными») липидами в организме за участие в метаболических реакциях. Однако с биологических позиций полное подавление кетоза не является необходимым. Было показано [Shenkin A., 1983], что больные, которые в ответ на недостаточное питание реагировали повышением продукции кетоновых тел и увеличением их уровня в крови и моче, имели более благоприятный прогноз течения заболевания и после хирургических операций, чем те, у которых подобная реакция не проявлялась. Это объясняется тем, что у так называемых кетоадаптированных больных лучше и быстрее включается механизм мобилизации жиров из их депо, чем у больных, организм которых вынужден использовать механизм белкового катаболического глюконеогенеза. Окисление глюкозы происходит преимущественно в мышцах, а хранение (после трансформации ее в жир) — в жировых клетках. Следовательно, клеточные мембраны этих двух тканей находятся в постоянном контакте с глюкозой. Очевидно, что метаболизм глюкозы в этих тканях может регулироваться свойствами как глюкозы, так и самих клеток. Клеточные мембраны этих тканей в принципе непроницаемы для свободной глюкозы. Известно, что преимущественный путь транспорта глюкозы через клеточную мембрану связан с присутствием инсулина и зависит от наличия рецепторов клеточных мембран к инсулину [Crofford С. В., Renold A. E., 1965]. В мышцах существует и другой механизм мембранного транспорта глюкозы. Он действует в периоде интенсивной мышечной работы и без участия инсулина. Однако это касается весьма малой части глюкозы. Проникшая в мышечную ткань глюкоза в периоде интенсивной мышечной деятельности практически вся превращается в лактат или окисляется до СО2. Метаболизм мозга, эритроцитов, а также лейкоцитов целиком зависит от глюкозы. Эти клетки не имеют рецепторов к инсулину, и их мембраны свободно проницаемы для глюкозы. Концентрация глюкозы в нейронах и эритроцитах находится в соответствии с концентрацией ее в плазме. Следовательно, сам механизм проникновения глюкозы в нейроны, эритроциты и лейкоциты через их мембрану является простейшим передвижением субстрата по градиентам концентраций. Утилизация глюкозы в них также осуществляется без участия инсулина. С точки зрения образования энергии метаболизм углеводов наиболее полноценно происходит при достаточной оксигенации тканей. Относительная гипоксия, практически постоянно встречающаяся в раннем постагрессивном периоде, служит плохим фоном для обмена углеводов и подлежит обязательной коррекции. Действительно, как показали проведенные нами исследования, концентрация пирувата и лактата уже в 1-е сутки после резекции желудка по поводу рака увеличивалась соответственно до 172,2 и 152% исходного значения. Нормализация содержания этих соединений в крови происходила только на 3—4-е сутки. Это указывает на нарушение углеводного метаболизма и смещение его в раннем послеоперационном периоде в анаэробной фазе (хотя, по нашим данным, это и не сопровождается выраженным метаболическим ацидозом). Метаболизм белков и аминокислот. В организме здорового человека с массой тела 70 кг содержится около 10 кг белка, т. е. около 14% массы тела. Приблизительно 7 кг находятся в клеточной массе, остальные 3 кг распределены вне клеток (внеклеточный водный сектор, соединительная ткань, кости) и в строгом смысле не являются обменным белком. Белок клеточной массы распределен неравномерно: около 6 кг находится в мышечных клетках и около 1 кг в остальных органах, включая паренхиматозные. Белки плазмы крови в обменных процессах участвуют лишь постольку, поскольку происходят их естественный лизис и последующий синтез нового белка взамен разрушенного. Одно из важных назначений плазменных белков — поддержание коллоидно-осмотических взаимоотношений между сосудистым и интерстициальным пространством. Катаболическая фаза обмена проявляется главным образом преобладанием распада белков над их синтезом и нарастанием отрицательного азотистого баланса. Если выраженный отрицательный азотистый баланс продолжается больше 2—3 нед, то это может привести к необратимым изменениям и даже смерти. Взрослый человек в норме при уравновешенной суточной диете в 2500—3000 ккал, содержащей 60—100 г белка, выделяет ежедневно с мочой 9—13 г азота (аммиак, азот мочевины, азот отдельных неиспользованных аминокислот); с калом выводится около 1—2 г азота [Покровский А.А., 1964]. При этом сохраняется азотистое равновесие, т. е. количество поступающего азота равно количеству выделяемого. После операции или травмы выделение азота с мочой обычно увеличивается в большей или меньшей степени (табл. 3.2). Важно, что отрицательным азотистый баланс возникает на фоне недостаточного поступления азота извне.
Таблица 3.2. Метаболические функции питании при неполном парентеральном
* За вычетом массы удаленных органов и перспирационных потерь во время операции.
При истощении запасов углеводов в организме и включении в метаболизм жиров в значительной степени меняется характер белкового метаболизма: в белковом балансе начинает существенно преобладать расход белков над их поступлением. В таких случаях основным источником белков являются мышцы. Происходит интенсивный распад мышечных белков до аминокислот, которые затем используются печенью для глюконеогенеза (см. рис. 3.1), достигающего в данном периоде наибольшей интенсивности. Процесс этот обычно находится в прямой зависимости от тяжести состояния больного и длительности заболевания. В печени белки дезаминируются, их аминная группа утилизируется в интенсивном синтезе мочевины, а карбоновые фрагменты становятся основой синтеза углеводов (глкжонео-генез). Таким образом, распад клеточных белков проявляется образованием большого количества азота, экскреция которого увеличивается и достигает 15—30 г/сут. По данным Ю. Ф. Жаровой (1972), А. В. Суджяна (1973) л Н. Hartig (1966), даже после резекции желудка белковый катаболизм весьма выражен и выведение азота составляет 11—40 г/сут. Большая часть азота выделяется в виде мочевины, меньшая — в виде аминного азота. Если при этом учесть, что поступление белка в организм, находящийся в критическом состоянии, ничтожно или отсутствует, то становится ясным, что больной «поедает самого себя»: 20 г азота появляется в моче при распаде 125 г белка, которые составляют основу почти 500 г мышечной ткани. Одновременно в моче можно обнаружить большее или меньшее количество аминного азота, что свидетельствует о появлении в организме, в частности в крови, свободных аминокислот, которые начинают экскретироваться с мочой. Повышается также выведение креатинина в моче, появляется креатин. Учитывая, что в организме отсутствуют белковые депо или белки со свободной функцией (уровень белка плазмы длительно остается стабильным), можно предполагать, что в процесс распада вовлекается главным образом мышечный белок. У больных очень быстро наступает мышечная атрофия. Однако следует подчеркнуть, что такие органы, как сердце, печень, легкие, железы и кишечник, не становятся «донорами» белка 'даже при выраженной степени белкового голодания и способны долго сохранять хотя бы минимум своих функций. Метаболизм белка обеспечивает организму определенный энергетический субстрат. Однако этот субстрат оказывается слишком дорогим, поскольку белок в этих случаях используется не по прямому (пластическому) назначению. Пожалуй, выражение «печка топится ассигнациями» максимально характеризует критическое положение. Калорическая отдача белков, хотя и близка к углеводной (около 4 ккал/г), в энергетическом метаболизме не столь эффективна. Это связано с тем, что атомы углерода, экскретируемые с мочевиной, не окисляются до конца. При этом на выведение каждого грамма азота (в составе мочевины) организм расходует около 20 кал (около 84 Дж). Мы наблюдали больного М., 27 лет, оперированного по поводу разлитого перитонита на почве панкреонекроза. Уже на 3-й сутки после операции при явно недостаточном поступлении аминокислот и белков выведение аминного азота составило 1,7 г/сут (425% нормы!). Это свидетельствовало о крайней степени белкового катаболизма. На 6-е сутки больной погиб. Обычно у больных, находящихся в критическом состоянии, содержание аминного азота в моче составляет, по нашим данным, 175—190% исходной величины. Концентрация общего азота в моче у них обычно достигает 125—130% исходной величины. Определение баланса на основании точного учета количества получаемого с белками выводимого азота показывает, что перед операцией он бывает, как правило, положительным и составляет в среднем 6—8 г/сут. С 1-х суток после операции при принятых в хирургических учреждениях нормах парентерального питания наблюдается резкое преобладание выведения азота над его поступлением. Как правило, максимум дефицита азота приходится на 2—3-й сутки после операции. Только за 4 сут суммарный дефицит азота, по нашим наблюдениям, составляет 48 г, что соответствует распаду почти 30 г белка, или 1400 г мышечной ткани. D. P. Cuthberston (1930) обратил внимание на увеличение уровня обмена и потерь азота после крупных травматических повреждений. Он предположил, что мышечные белки расходуются при этом для обеспечения потребностей выздоровления, и указал, что повышение белкового метаболизма может быть частично покрыто, но не устранено полностью усилением питания. J. М. Kinney и соавт. (1970) установили, что после тяжелых повреждений прямое обеспечение организма энергией не является функцией белкового катаболизма: белки расходуются прежде всего для обеспечения печени субстанциями, включающимися в процесс глюконеогенеза. Авторы сделали еще одно интересное наблюдение: усиленный печеночный глюконео-генез не подавлялся искусственным повышением уровня глюкозы в крови, если больной не получал инсулин. Отрицательный азотистый баланс в постагрессивном периоде еще более усугубляется в связи с потерями белка внепочечным путем, в частности при ожогах, желудочно-кишечных свищах, обширных раневых поверхностях. Таким образом, в критических состояниях метаболизм, оцениваемый методом непрямой калориметрии, а также по балансу азота, приобретает выраженный катаболический характер, в. основе которого — преимущественная потеря азота и извращенный характер метаболизма. В цитоплазме большинства клеток содержится 20 аминокислот, из которых организм синтезирует специфические белки. Все аминокислоты человека относятся к а-аминокислотам и имеют общую формулу RCH(NH2)COOH. Восемь аминокислот не могут быть синтезированы в организме и должны поступать в кровь в готовом виде через кишечник (после гидролиза белка) или парентеральным путем. Они называются незаменимыми (эссенциальными). К незаменимым аминокислотам относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Суточная потребность человека в каждой из незаменимых аминокислот составляет около 1 г. Остальные 12 аминокислот (аланин, аргинин, аспарагин, цистин, цистеин, глутамин, глицин, орнитин, гистидин, серии, тирозин, таурин) могут переходить одна в другую и называются заменимыми (неэссенциальными). Однако деление это условно, поскольку существуют переходные формы, например цистин и тирозин, которые в нормальных условиях являются заменимыми, но становятся незаменимыми при определенных обстоятельствах, например при крайне тяжелых состояниях и у новорожденных, т. е. когда невозможен нормальный ход метаболических процессов. По оптическим свойствам аминокислоты человека относятся к 1-ряду. Некоторые аминокислоты, в избытке получаемые организмом в нормальных условиях, например глицин, не утилизируются полностью и в больших количествах выделяются почками. Это существенный момент, поскольку глицин часто поступает в организм в высоких концентрациях в составе растворов аминокислот как источник азота и, следовательно, может включаться в неспецифический путь метаболизма других необходимых заменимых аминокислот. Это свидетельствует о том, что наиболее эффективный путь обеспечения метаболизма, который определяет оптимальный набор аминокислот в клетке,— введение в организм комплекса, содержащего полный сбалансированный набор заменимых аминокислот. Хотя принципиально количество последних, получаемых организмом в норме, составляет лишь 20%, общего количества всех аминокислот, в критических состояниях необходимо вводить до 45—50% их, чтобы обеспечить оптимум [Munro H. N., 1972]. Метаболизм поступивших аминокислот происходит главным образом в печени. При этом судьба их различна. По данным D. Elwyn (1970), полученным в опытах на крысах при содержании их на белковой диете, 57% аминокислот окисляется до мочевины, 23% поступает в общее кровообращение, 6% используется для синтеза белков плазмы и 14% временно задерживается печенью. Метаболизм жиров. Запасы жиров покрывают до 80—90% энергетических потребностей больного, находящегося в критическом состоянии, если он не получает энергетический субстрат извне. В результате распада жиров в крови появляются большое количество триглицеридов, определяемых в плазме как свободные жирные кислоты, и глицерол, который после превращения в глюкозу (глюконеогенез) окисляется в клетках (см. рис. 3.1). В плазме жиры могут находиться в виде: 1) эмульсии частиц жира размером 0,4—3 мкм, так называемых хиломикронов, которые представляют собой экзогенные жиры, поскольку образуются непосредственно при всасывании их в кишечнике; 2) макромолекулярных комплексов так называемых липопротеинов. Это комплексы белков с холестеролом, фосфолипидами и триглицеридами. Липопротеины образуются в печени и рассматриваются как эндогенные липиды; 3) свободных жирных кислот, которые образуются при гидролизе триглицеридов в жировой ткани. Эта фракция жиров также является эндогенным жиром. Окисление жиров может в значительной степени покрыть калорические потребности организма. Энергетическая ценность их довольно высока и составляет 9,3 ккал/г (39 кДж/г). В; организме имеются большие депо этого высокоэнергетического субстрата. Однако полный цикл включения жиров в метаболизм весьма сложен и требует длительного времени. Продолжается изучение механизмов, которые обеспечивают появление свободных жирных кислот из триглицеридов, транспорт их в кровь, гидролиз до двукарбоновых фрагментов и последующее включение в энергетический метаболизм. Вместе с тем процесс окисления жирных кислот выгоден тем, что идет до конца, т. е. до образования СО2 и Н2О. Высвобождающаяся при этом химическая энергия частично накапливается в ангидридных фосфатных связях, а частично переходит непосредственно в теплоту. Гидролиз жиров в организме и его интенсивность обусловлены целым рядом факторов. Основными липолитическими агентами являются адреналин, норадреналин и гормон роста. Под влиянием этих факторов в крови повышается уровень свободных жирных кислот и глицерола. Образующийся при этом глицерол: попадает непосредственно в плазму. Свободные жирные (неэстерифицированные) кислоты, образовавшись и проникнув в плазму, могут быть использованы в дополнение к глицеролу в энергетическом метаболизме (путем окисления) или реэстерифицироваться и отложиться в тканях в виде триглицеридов. Глице
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 339; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.10.152 (0.021 с.) |