Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
III.2. Закон Био-Савара-ЛапласаСодержание книги
Поиск на нашем сайте
После опытов Эрстеда начались интенсивные исследования магнитного поля постоянного тока. Французские физики Био и Савар в первой четверти XIX в. изучали магнитные поля, создаваемые в воздухе прямолинейным Био и Савар попытались получить закон, который позволял бы рассчитывать индукцию в каждой точке магнитного поля, создаваемого током (3.4) где индукция магнитного поля малого элемента проводника с током, а интегрирование проводится по всей длине проводника. Закон Био-Савара-Лапласа для проводника с током I, элемент которого создает в некоторой точке А индукцию поля записывается в виде: (3.5) где вектор, по модулю равный длине проводника и совпадающий по направлению с током; радиус-вектор, проведенный от элемента проводника в точку А поля; модуль радиуса-вектора. Направление перпендикулярно и , то есть перпендикулярно плоскости, проведенной через эти векторы, и совпадает Коэффициент пропорциональности зависит от выбора системы единиц. В СИ это размерная величина, равная где магнитная постоянная. Таким образом, в СИ закон Био-Савара-Лапласа имеет вид
Так как модуль векторного произведения равен dl r sin α, то модуль вектора определяется выражением (3.6) Из выражений (3.4) и (3.5) следует, что магнитная индукция поля, создаваемого в вакууме током I, идущим по проводнику конечной длины и любой формы, равна (3.7) Закон Био-Савара-Лапласа совместно с принципом суперпозиции позволяет рассчитывать магнитные поля, создаваемые любыми проводниками с током. 1. Магнитное поле прямого тока. В данном случае поле создается Из рис. 3.4 следует: откуда c другой стороны, откуда Подставляя эти выражения в формулу (3.6), получим: (3.8) Так как угол для всех элементов прямого тока изменяется в пределах от 0 до , то согласно (3.7) и (3.8) получим (3.9) 2. Магнитное поле в центре кругового проводника с током. В данном случае все элементы dl кругового проводника с током создают в центре магнитное поле одинакового направления – вдоль нормали от витка (рис. 3.5). Поэтому сложение можно также заменить сложением их модулей. Так как все элементы проводника dl перпендикулярны радиус-вектору () и расстояние всех элементов проводника до центра кругового витка одинаково и равно R, то Интегрируя это выражение по l, получим (3.10)
|
||||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 229; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.198.250 (0.008 с.) |