Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция 3. Микроканоническое и каноническое распределения Гиббса в классической статистической теорииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Изолированная система. Микроканоническое распределение Рассмотрим ситуацию, когда изучаемая система является адиабатически изолированной от окружающей среды или, иначе, замкнутой. В этом случае изучаемая система отделена от окружающей среды адиабатическими стенками, которые препятствуют как обмену частицами, так и теплообмену между системой и окружающей средой. При этом принципиально, что стенки препятствуют именно взаимодействию. Эта постановка задачи вовсе не исключает наличие влияния окружающей среды, которое может быть с большой степенью точности аппроксимировано чисто силовым внешним воздействием. Другими словами, под замкнутой мы понимаем систему, все существенное влияние на которую можно с достаточной точностью учесть, рассмотрев ее во внешних стационарных силовых полях. Главное, что замкнутая система не обменивается с окружающей средой ни частицами, ни энергией. При таком задании нашей системы мы фиксируем число частиц в ней , ее объем и остальные внешние параметры , а также ее энергию. Причем речь идет не о внутренней энергии, а именно об энергии в обычном механическом понимании. Состояние равновесия такой системы задается внешними параметрами и ее энергией. Для полноты информации – для того, чтобы написать функцию Гамильтона нашей системы - нам еще, конечно же, нужно знать число частиц N в нашей системе. Распределение вероятности различных микросостояний замкнутой системы называется микроканоническим. Задача о функции распределения изолированной системы является исходной для статистической теории. Вид функции распределения для замкнутой системы являются отправной точкой при нахождении канонического и большого канонического распределения. Вид функции распределения для адиабатически изолированной системы непосредственно вытекает из постулата, который носит название принципа равной вероятности. Этот принцип состоит в следующем. Состояние равновесия нашей замкнутой системы задается ее энергией Е. Функция Гамильтона системы есть ни что иное, как ее полная энергия. Следовательно, микросостояния нашей системы, возможные в заданном состоянии равновесия, определяются условием . (1) Никакие другие микросостояния нашей системы в этом ее состоянии равновесия не возможны. Утверждение постулата равной вероятности состоит в том, что с равной вероятностью реализуется любое микросостояние, возможное в данном состоянии равновесия изолированной системы. Непосредственно из постулата равной вероятности следует, что функция распределения нашей замкнутой системы имеет вид . (2) Действительно, пусть энергия нашей системе является не строго постоянной, а может меняться в очень малом интервале от до . Тогда возможные микросостояния нашей системы определяются условием . (3) Пусть ширина интервала энергии хоть и конечна, но настолько мала, что для нашей системы с большой точностью справедлив принцип равной вероятности. Т.е. ширина интервала настолько мала, что каждое микросостояние, энергия которого попадает в данный интервал, реализуется с равной вероятностью. Другими словами, функция распределения нашей системы имеет вид , (4) где С – константа. Равновесное значение макроскопического параметра, как мы значем, есть . (5) Теперь для того, чтобы перейти от квазизамкнутой системы к истинно замкнутой, мы должны устремить к нулю. В результате мы получим наш внутренний макроскопический параметр . Согласно определению дельта-функции Дирака этот предел равен . (6) Таким образом, функцию распределения адиабатически изолированной системы мы можем написать как произведение нормировочной постоянной на дельта-функцию Дирака, аргумент которой есть разность функции Гамильтона нашей системы и энергии E . Значение постоянной определяется условием нормировки . (7) Подставляем в условие нормировки явный вид функции распределения и переходим от интегрирования по фазовому пространству к интерированию по энергии в соответствии с той теоремой, которую сформулированной на прошлой лекции. В результате получим , (8) где , (9 (10) объем фазового пространства, ограниченный поверхностью постоянной энергии . Воспользовавшись основным свойством дельта-функции . (11) В результате получаем . (12) Отсюда постоянная есть . (13)
|
||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 810; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.232.94 (0.008 с.) |