Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция 12. Статистика равновесных носителей заряда в полупроводниках. Электронно-дырочная теплоемкость.Содержание книги
Поиск на нашем сайте
В случае полупроводника вопрос о распределении носителей заряда несколько усложняется. Дело в том, что в полупроводнике носители заряда возникают в результате возбуждения электронов из валентной зоны в зону проводимости (разрыва валентных связей). В результате такого перехода мы получаем электрон в валентной зоне и пустое место (дырку) в зоне проводимости. Валентные электроны соседних атомов могут захватываться на пустое место. Таким образом, дырка перемещается по кристаллу, и, соответственно, дает вклад в его термодинамические характеристики. Вероятность возбуждения электрона в валентную зону, очевидно, изменяется с температурой как Таким образом, вычисление химического потенциала полупроводника при заданном числе носителей в зонах становится бессмысленным. Поэтому в полупроводниках уравнение для определения химического потенциала нужно писать из несколько иных соображений. Рассмотрим собственный полупроводник (без примесей). В этом случае электроны проводимости и дырки в валентной зоне появляются только парами. Поэтому число электронов в зоне проводимости
Равенство (11) можно использовать как уравнение для химического потенциала. Действительно, число электронов и дырок даются выражениями
и
Здесь мы учли, что вероятность того, что в состоянии Ясно, что в состоянии равновесия дырки будут расположены главным образом вблизи потолка валентной зоны. Поэтому при вычислении
где Как было получено на прошлой лекции, плотность состояний невыроженной зоны проводимости с изотропным параболическим законом дисперсии имеет вид
Легко сообразить, что плотность состояний вблизи потолка валентной зоны будет получаться из (5) заменой
Соответственно, для числа электронов проводимости и дырок получаем
и
Здесь мы ввели обозначения Как мы видели на прошлой лекции, при
Таким образом, при абсолютном нуле
и
Поскольку при абсолютном нуле свободных носителей нет Рассмотрим теперь случай достаточно низких температур, при которых
и
Учитывая, что
получаем
и
Здесь мы обозначили
и
Величины (18) и (19) называются эффективными плотностями состояний зоны проводимости и валентной зоны соответственно. Таким образом, уравнение (1) для химического потенциала принимает вид
Отсюда для химического потенциала получаем
Таким образом, мы видим, что при абсолютном нуле температуры химический потенциал в собственном полупроводнике находится посередине запрещенной зоны. Энергии краев зон зависят от температуры. Если выбрать начало отсчета энергии в середине запрещенной зоны при любой температуре, то хим. потенциал – линейная функция температуры. С ростом температуры он приближается к той зоне, в которой эффективная масса плотности состояний меньше. Это происходит потому что для обеспечения равенства концентрации электронов и дырок необходимо чтобы химический потенциал располагался ближе к зоне с меньшей плотностью состояний. Подставляя (21) в (15) и (16), находим равновесные значения концентраций свободных носителей заряда
Таким образом, мы видим, что, как и следовало ожидать, число носителей в собственном полупроводнике, пропорционально вероятности возбуждения электрона из валентной зоны в зону проводимости. В случае примесных полупроводников мы должны учесть, что электроны в зоне проводимости могут появляться за счет перехода с донорных примесных уровней, а дырки в валентной зоне за счет переходов электронов на акцепторные уровни. Поэтому в этом случае уравнение на химический потенциал мы должны писать как
Здесь Задача о вычислении концентрации электронов на примесных уровнях довольно непростая. Ее мы рассмотрим на отдельном семинарском занятии. Пока же для качественных оценок мы будем использовать самое простое приближение – будем считать, что каждая примесь имеет один невырожденный уровень энергии
и
где Определим теперь положение хим. потенциала в полупроводнике, в котором имеется только один сорт примеси. Пусть это будут доноры. Здесь возможны два случая. Если температура не очень велика, тогда электроны в зоне проводимости будут появляться в основном за счет термоионизации доноров. В этом случае концентрацией дырок можно пренебречь и условие (23) приобретает вид
При достаточно высоких температурах концентрация электронов в зоне проводимости, пришедших из валентной зоны может оказаться больше, чем концентрации доноров. В этом случае полупроводник будет вести себя как собственный. Найдем химический потенциал в первом случае, когда справедливо (26). В случае невырожденного полупроводника (в котором
, запишем (26) в виде
где
Решая квадратное уравнение (28) находим концентрацию электронов проводимости
Рассмотрим два предельных случая. Пусть температура настолько низка, что выполняетсяусловие
где
При концентрации доноров Рассмотрим теперь противоположный предельный случай, когда
т.е. электроны со всех доноров ушли в зону проводимости. Для химического потенциала в этом случае получаем
Легко видеть, что логарифм в (34) отрицательный, и химический потенциал расположен ниже донорного уровня. Рассмотрим теперь случай компенсированного полупроводника. Компенсированным называется полупроводник, в котором имеются как доноры, так и акцепторы. Пусть
Поступая также, как при получении (28), уравнение (35) запишем в виде
Отсюда
Рассмотрим опять два предельных случая. В случае низких температур
Как видно, при низких температурах зависимость электронной концентрации от температуры определяется в основном экспонентой с показателем равным энергии ионизации деленной на температуру. Соответственно, для химического потенциала полуяаем
Отметим, что при абсолютном нуле температуры химический потенциал равен энергии основного состояния донора. Так должно быть, поскольку при нулевой температуре хим. потенциал отделяет занятые состояния от пустых. В рассматриваемом случае при нулевой температуре часть доноров не имеет электронов, а в оставшейся части электрон занимает основное состояние донора. В случае высоких температур
т.е. все оставшиеся электроны после ухода на акцепторы попадают в зону проводимости. Зависимость хим. потенциала от температуры в этом случае имеет вид
Вычислим теперь теплоемкость электронной подсистемы полупроводника. Для простоты рассмотрим собственный полупроводник. Внутренняя энергия электронов проводимости и валентных электронов
Здесь первая сумма есть внутренняя энергия электронов в зоне проводимости, а вторая – внутренняя энергия электронов в валентной зоне. Совершая во второй сумме тождественное преобразование
получаем
Величина
Как видно, внутренняя энергия складывается из двух частей – внутренней энергии электронов в зоне проводимости, и внутренней энергии частиц с энергией Записывая выражение (44) через плотность состояний и воспользовавшись (5) и (6), находим
где
Для упрощения вычислений рассмотрим невырожденный полупроводник. Тогда концентрация носителей в зонах дается выражением (22), а для интеграла (46) имеем
Интеграл (47) заменой
Подставляя (48) в выражение для внутренней энергии (45), и используя (20) и (21), получим
Дифференцируя (49) по температуре, находим электронно-дырочную теплоемкость, отнесенную к единице объема
где
Формула (50) справедлива при Теплоемкость 1см3 при температурах выше дебаевской по порядку величины равна Аналогичные соотношения имеют место и в случае примесных полупроводников. Таким образом, электронно-дырочная теплоемкость в полупроводниках всегда очень мала по сравнению с теплоемкостью кристаллической решетки.
|
||
|
Последнее изменение этой страницы: 2016-06-26; просмотров: 949; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.169 (0.009 с.) |