Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция 9. Теплоемкость кристаллической решетки.Содержание книги
Поиск на нашем сайте
Задача о равновесной внутренней энергии и, соответственно, о теплоемкости идеальной кристаллической решетки сводится к задаче о теплоемкости равновесной системы независимых линейных гармонических осцилляторов с единичной массой, т.е. к задаче о равновесной системе с гамильтонианом
где
- оператор Гамильтона линейного гармонического осциллятора с единичной массой и частотой
Каждый осциллятор отвечает одному из собственных колебаний кристаллической решетки. Различные осцилляторы отвечают различным собственным колебаниям. Каждому собственному колебанию отвечает свой собственный осциллятор. Собственное колебание кристаллической решетки представляет собой бегущую по кристаллу плоскую волну смещений атомов. Произвольное колебание кристаллической решетки можно представить в виде суперпозиции этих плоских волн – собственных колебаний. Каждое собственное колебание задается двумя величинами – квазиволновым вектором Квазиволновой вектор Квазиволновой вектор обладает особенностью, существенно его отличающей от волнового вектора обычных волн в сплошной среде. Не все значения квазиволнового вектора являются физичиски различными. Два значения квазиволнового вектора
Здесь Как уже говорилось, каждому значению квазиволнового вектора отвечает Напомню, что различают два типа ветвей собственных колебаний – акустические и оптические ветви. В трехмерном кристалле число акустических ветвей равно В акустических ветвях закон дисперсии
При малых
где
Такой закон дисперсии обусловлен тем, что в колебаниях акустических ветвей при длинных волнах все атомы в элементарной ячейке смещаются практически одинаково, т.е. элементарная ячейка колеблется как целое. Сложная структура ячейки при этом не проявляется. Акустическим ветвям обычно приписывают индексы В оптических ветвях напротив
Соответственно, при малых
Такой закон дисперсии обусловлен тем, что в колебаниях оптических ветвей при длинных волнах положение центра тяжести элементарной ячейки практически не меняется, т.е. ячейка деформируется. Оптическим ветвям обычно приписывают индексы Любой кристалл, вообще говоря, имеет конечные размеры. Когда мы описываем кристалл, мы должны задать граничные условия. Граничные условия призваны описывать физическую ситуацию на поверхности кристалла. Однако, все известные в природе силы достаточно быстро убывают с расстоянием. Поэтому в глубине кристалла явления на поверхности практически не будут ощущаться. Нас интересуют аддитивные величины. Значение аддитивной величины для всей системы равно сумме ее значений для частей этой системы. Поскольку объем кристалла, в котором практически не ощущается его поверхность, существенно превышает прилегающий к границе объем, для которого граница, существенна, то конкретный вид граничных условий практически не влияет на значение аддитивной величины. Влияние граничных условий определяется отношение объема, для которого граница существенна, к объему, в котором граница не ощущается. В нашем случае объемного кристалла с макроскопическими размерами это отношение мало. Поэтому в нашем случае использование тех или иных граничных условий, по большому счету, вопрос удобства. По той же самой причины, понятно, форму кристалла можно брать такую, какая удобна. При этом, конечно граничные условия и форма кристалла должны быть разумными – не какими-нибудь экзотическими. В нашем случае очень удобно рассматривать наш кристалл. В нашем случае кристалл удобно рассматривать как параллелипипед, построенный на векторах элементарных трансляций кристаллической решетки и ставить периодические граничные условия, т.е. требовать, чтобы на противоположных гранях этого параллелепипеда все было одинаково. Наложение этих граничных условий приводит к тому, что спектр квазиволнового вектора является дискретным. Проекция квазиволнового вектора на направление вектора элементарной трансляции
где Подставляя (10) в условия (3), получаем
Таким образом, число физически различных значений квазиволнового вектора равно числу элементарных ячеек
Итак, задача о внутренней энергии иделальной кристаллической решетки сводится к расчету теплоемкости равновесной системы Задача о равновесной системе линейных была решена на практическом занятии. Поэтому, воспользовавшись известным результатом, получаем, что свободная и внутренняя энергия кристаллической решетки есть
и
где
- энергия нулевых колебаний,
- среднее значение числа осциллятора, отвечающего собственному колебанию s-ой ветви с квазиволновым вектором Этот результат можно интерпретировать на языке квазичастиц. Будем каждому осциллятору, т.е. каждому собственному колебанию, поставим в соответствие квазичастицу с энергией, равной кванту этого осциллятора. Такие квазичастицы называются фононами. Каждый фонон задается двумя квантовыми числами- Как обсуждалось выше, спектр квазиволнового вектора формально является дискретным. Однако расстояние между соседними значениями квазиволнового вектора очень мало - обратно пропорционально размеру кристалла. Это позволяет в выражении (36) заменить сумму по квазиволновым векторам на интеграл
Рассмотрим случай низких температур, малых настолько, что в выражении для Установим, что это за низкие температуры. В знаменателе подынтегрального выражения стоит экспонента. Поэтому подынтегральное выражение быстро стремиться к нулю с ростом отношения
Закон дисперсии в звуковых колебаниях акустических ветвей имеет вид (5). Заметим, что скорость звука, вообще говоря, зависит от направления квазиволнового вектора. Давайте сделаем еще одно стандартное упрощение – заменим реальную скорость звука на ее среднее значения по направлению квазиволнового вектора. Обозначения менять не будем. В дальнейшем под В знаменателе подынтегрального выражения стоит экспонента. Поэтому подынтегральное выражение быстро стремиться к нулю с ростом отношения
При вычислении интеграла важно удачно выбрать систему координат. Зачастую гораздо удобнее вместо декартовых координат использовать криволинейные. То, какую систему координат удобно использовать при вычислении интеграла, определяется симметрией подынтегральной функции. В нашем интеграле подынтегральная функция не зависит от
В этом интеграле имеет смысл перейти к новой безразмерной переменной
Таким образом, мы видим, что при низких температурах тепловой вклад во внутреннюю энергию кристаллической решетки пропорционален четвертой степени температуры. Следовательно, теплоемкость кристаллической решетки
Теперь рассмотрим случай высоких температур, существенно превышающих произведение постоянной Планка на предельную частоту в спектре собственных колебаний
Поскольку частота любого собственного колебания
где
-среднее значение квадрата частоты Соответственно, для теплоемкости имеем
Таким образом, мы видим, что при высоких температурах теплоемкость кристаллической решетки выходить на константу
|
||||
|
Последнее изменение этой страницы: 2016-06-26; просмотров: 554; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.169 (0.008 с.) |