Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сочетание условий, приводящее к использованию тех или иных каузальных элементовСодержание книги
Поиск на нашем сайте
Информация о ковариации Фризе и Вайнер (Frieze, Weiner, 1971), руководствуясь ковариационной моделью Келли, попытались выяснить, в какой мере выносящий суждение субъект использует для объяснения успеха и неудачи информацию о стабильности и согласованности. Испытуемых просили объяснить последовательность успехов или неудач исходя из вайнеровской схемы четырех каузальных факторов, причем при этом использовались три уровня стабильности и три — согласованности (стабильность — результаты работы над предыдущим заданием совпадают с текущими на 100,50 или 0%; согласованность — доля людей, успешно справившихся с данным заданием, составляет 100, 50 или 0%). Полученные данные показывают, что информация о стабильности и согласованности использовалась испытуемыми в соответствии с предсказаниями модели. Чем значительнее была стабильность, тем весомее считалось влияние таких стабильных факторов, как трудность задания и способности, и тем меньшее влияние приписывалось таким ситуационным факторам, как случайность, а при атрибуции неудачи также и старанию. Примечательно, что в этом случае информации о согласованности с результатами других людей (которая давалась, разумеется, с позиции внешнего наблюдателя) уделялось большее внимание и она активнее использовалась, чем (как мы видели выше) в случае действий, не связанных с достижением (McArthur, 1972; Nisbett, Borgida, 1975). Как видно из рис. 14.1, я, низкая согласованность благоприятствует приписыванию результата таким внутренним факторам, как способности и старание, а высокая согласованность — такому внешнему фактору, как сложность задания. Стабильность и согласованность определяют предсказываемые моделью основные эффекты. Так, атрибуция относительно задания проявится тем сильнее, чем в большей степени высокая стабильность будет сочетаться с высокой согласованностью. При этом согласованность заметнее влияет на атрибуцию относительно задания, чем стабильность (см. рис. 14.1, б). Впрочем, немаловажны здесь и индивидуальные различия в процессах использования и переработки информации. В контексте влияния информации о стабильности на атрибуцию результатов относительно способностей в ситуации деятельности достижения определенную роль играют также эффекты последовательности. Для атрибуции небезразлично, будет ли (при работе над одним и тем же заданием) сначала преобладать неудача, а затем постепенно достигаться успех или, наоборот, после первоначального успеха доминирующей станет неудача. В последнем случае, как установили Джоунс, Рок, Шейвер, Гетэлс и Уорд (Jones, Rock, Shaver, Goethals, Ward, 1968), человек считает себя более способным, чем в первом, даже если соотношение частоты успехов и неудач в обоих случаях остается одним и тем же. Складывается впечатление, что при постепенном нарастании успеха человек приписывает упражнению и старанию большую по сравнению со способностями роль, тогда как при первоначальном успехе он может объяснить учащающиеся неудачи не утратой способностей, а ослабевающим старанием. Исследователи спрашивали учителей в повседневной школьной ситуации, какими причинами они объясняют достижения своих учеников. При этом Мейер и Бутцкамм (Meyer, Butzkamm, 1975) обнаружили существенные индивидуальные различия. Основной упор делался на факторы одаренности (50%) и старания или мотивации (30%). Одаренности придавалось тем большее значение, чем больше был разброс класса по показателю IQ. Трудность задания и случайность не играли в оценках учителей никакой роли. Фелсон и Борнстедт (Felson, Bohrnstedt, 1980) обнаружили, что учителя были тем более уверены в атрибуции одаренности и мотивации, чем более ярко выраженными были результаты школьников. Вопреки предположению Хайдера, атрибуции одаренности и мотивации коррелировали между собой не негативно, а позитивно, что соответствует каузальной схеме множественных необходимых причин. Рис. 14.1. Усредненные эффекты влияния информации о стабильности и согласованности на атрибуцию результатов: а) зависимость вайнеровских четырех причинных факторов от информации о согласованности (количестве людей, достигших тех же результатов); б) взаимосвязь информации о согласованности и стабильности при атрибуции относительно сложности задания (Frieze, Weiner, 1971, p. 594, 597) Каузальные схемы Каузальные схемы (Kelley, 1972), как мы уже знаем из предыдущей главы, представляют собой специфические для определенных ситуаций гипотетические представления об уместности (априорной вероятности) тех или иных причин. Они позволяют сделать вывод о причинах (или частичных причинах) наличия или отсутствия какого-либо эффекта при дефиците ковариационной информации. Например, если некто достигает успеха в выполнении определенного задания и у нас есть лишь информация о согласованности, состоящая в том, что большинство людей в работе над этим заданием терпят неудачу, то речь идет о событии необычном, объяснение которого осуществляется по готовой каузальной схеме множественных необходимых причин (см. рис. 13.4, я). Соответственно успех будет приписан одновременно высокому уровню способностей и сильному старанию. Если же мы получаем еще и дополнительную информацию о стабильности, указывающую, например, на такую особенность данного человека, как успешное решение многих других задач из этой же области, то у нас появляются основания придать больший вес одной из двух благоприятствующих успеху причин, а именно способностям. В связи с этим степень значимости второй возможной причины — старания — в соответствии с принципом обесценивания снижается. В этом случае используется схема не множественных необходимых причин, а компенсаторного различения причин. С помощью компенсаторной схемы хорошо объясняются градуальные (т. е. принимающие континуум значений) эффекты, если их появлению благоприятствуют два или более факторов. Когда значение градуального эффекта не превышает некоторого типичного уровня, оно также может быть объяснено сильной выраженностью одного из факторов без привлечения другого фактора. Для таких пограничных случаев компенсаторная схема полностью совпадает со схемой множественных достаточных причин (ср. рис. 13.4, б). Для деятельности достижения наиболее подходящей является каузальная схема градуальных эффектов и компенсаторных причин. В качестве эффектов здесь выступают успех и неудача, а их величина зависит от степени сложности задания. Возрастание сложности ведет к увеличению эффекта успеха (см. рис. 14.2: У, УУ, УУУ), ее падение — к увеличению эффекта неудачи (Н, НН, ННН). Благоприятствующими эффекту успеха и взаимокомпенсирующими причинами являются способности и старание. В то же время это означает, что большая часть значений рассматриваемого эффекта определяется обеими причинами, т. е. ни одна из них не может полностью отсутствовать. В отличие от способностей и старания трудность задания представляет собой фактор, препятствующий-достижению успеха. В этом отношении описанная градация эффектов успеха и неудачи соответствует модели выбора риска. Иначе говоря, трудность и привлекательность успеха находятся в отношении прямо пропорциональной зависимости, трудность и привлекательность неудачи — в отношении обратно пропорциональной зависимости. В матрице, изображенной на рис. 14.2, представлена такого рода компенсаторная каузальная схема для семи градаций эффекта результата действия (ННН; НН; Н; У; УУ; УУУ; УУУУ), соответствующих семи степеням сложности задания. Для большинства значений сложности (за исключением степени 4) для достижения успеха недостаточно лишь одной из благоприятствующих успеху причин (способностей и старания), необходимы они обе. Значение каждой причины имеет 4 градации и объединяется со значением другой причины не мультипликативно, а аддитивно. Для средней степени сложности задания (4) имеется две возможные комбинации связи причин, соответствующие схеме множественных достаточных причин (верхнее левое и нижнее правое поля): при максимальной выраженности одной из причин другая отсутствует. Успех при работе с чрезвычайно сложными заданиями (6 и 7) и неудача в случае выполнения заданий низкой сложности (1 и 2) представляют собой нетипичные эффекты (соответствующие поля обозначены светло- и темно-серым цветами). В обоих случаях особенно уместна схема необходимых причин. Рис. 14.2. Каузальная схема компенсаторных причин для градуальных эффектов деятельности достижения: успеха при возрастании степени сложности задания {У; УУ и т. д.) и неудачи при ее падении (Н; НН и т. д.). Оба причинных фактора - способности и старание - могут иметь четыре значения и взаимно (аддитивно) друг друга компенсировать. Если нам известен эффект, то вызвавшее его соотношение значений обеих причин допускает различные толкования (за исключением случаев максимального успеха или неудачи). Такая неоднозначность дает простор для проявления индивидуальной предвзятости атрибуции Если же нам не известно значение ни одной из причин, субъект сталкивается с многозначностью, дающей простор проявлению индивидуальных пристрастий в атрибутивных процессах (и тем самым, как мы увидим ниже, вскрывающей индивидуальные различия в мотивации). Многозначность появляется, прежде всего, при достижении успеха в заданиях различной степени сложности от 4 до 6. Так, успех при шестой степени сложности (УУУ) может быть объяснен либо выдающимися способностями и умеренным старанием, либо средними способностями и сильным старанием. То же самое имеет место и в случае неудачи (вторая и третья степени сложности). Например, неудача в решении задания второй степени сложности (НН) может быть приписана либо низким способностям и отсутствию старания, либо отсутствию способностей и слабому старанию. Изображенная на рис. 14.2 матрица позволяет выделить внутри каузальной схемы более высокого порядка (схемы градуальных эффектов) три различные взаимосвязанные схемы объяснения. Во-первых, при сравнении (по строкам или по столбцам) результатов для заданий различной степени сложности выясняется, что степень выраженности некоторой причины ковариирует с интенсивностью эффекта, хотя значение второй причины не меняется. Этот случай можно назвать простой ковариацией отдельной причины с эффектом. Она наблюдается, когда одна из причин (например, уровень собственных способностей) остается неизменной, а улучшение результата связано лишь с увеличением значения второй причины (ростом старания). Во-вторых, при сравнении между собой явно различных эффектов, отличающихся друг от друга, по крайней мере, на две степени сложности, выясняется, что с увеличением эффекта могут ковариировать одновременно обе причины (по диагоналям в направлении от левого нижнего угла к правому верхнему) и каждая из них будет возрастать прямо пропорционально увеличению эффекта. Таким образом, можно говорить о схеме комбинированной ковариации (причин с эффектом). Комбинированная, как и простая, ковариация служит основой для предсказания эффектов, когда известна степень выраженности обеих причин. В-третьих, при объяснении неизменности силы эффекта (диагонали в направлении от левого верхнего угла к правому нижнему) выясняется, что степени выраженности обеих причин находятся в отношении обратно пропорциональной зависимости друг с другом. В этом случае можно говорить о каузальной схеме компенсации (влиянии обеих благоприятствующих успеху причин), о компенсации старанием, когда имеющееся различие в способностях уравновешивается при достижении определенного эффекта соответствующими затратами старания, и о компенсации способностями, когда различие в старании выравнивается за счет соответствующего различия в способностях. Как свидетельствуют данные Андерсона и Бутцина (Anderson, Butzin, 1974), а также Куна и Вайнера (Кип, Werner, 1973), описанная выше компенсаторная схема градуальных эффектов уместна для объяснения результатов деятельности достижения лишь при отсутствии у субъекта информации о степени выраженности одной из двух причин. В основу своих гипотез Кун и Вайнер положили лишь схему достаточных и необходимых причин. Они считали, что в случае необычных эффектов — успеха при выполнении очень сложных и неудачи при выполнении очень легких заданий — во внимание принимаются (как очень слабо или сильно выраженные) сразу обе причины (множественная необходимость), а в случае обычных эффектов — успеха в легком задании и неудачи в сложном — требуется учитывать наличие или отсутствие лишь одной из причин (множественная достаточность). Авторы исследования давали испытуемым информацию о градуальных эффектах, а именно об успешной или неудачной сдаче экзамена, характеризовавшегося одной из трех степеней сложности (задававшейся с помощью информации о согласованности — успеха добиваются 10, 50 или 90% сдающих экзамен). Наряду с информацией о результате и степени сложности экзамена испытуемым сообщалось еще и значение одной из двух причин (способности или старание); оно было высоким в случае успеха и низким в случае неудачи. Испытуемые должны были указать, считают ли они соответствующее значение второй причины (высокое в случае успеха и низкое в случае неудачи) решающим для возникновения данного эффекта, несущественным или же противоречащим эффекту. Результаты этого исследования представлены на рис. 14.3. Если при сдаче сложного экзамена достигался успех (необычное событие), то испытуемые были уверены в том, что вторая из благоприятствующих причин тоже была сильно выражена. Эта оценка сохранялась и в том случае, когда успешно сданный экзамен характеризовался средней сложностью. Если же, напротив, добиться успеха было легко (обычное событие), испытуемые считали, что значение второй причины не могло быть высоким. Для ситуации неудачи были получены совершенно аналогичные данные, соответствующие компенсаторной схеме градуальных эффектов. Впрочем, при неудачной сдаче легкого экзамена (необычное событие) результаты оказались менее однозначными, поскольку уверенность в слабой выраженности второго фактора была незначительной. Неудача при сдаче трудного экзамена (обычное событие) создавала устойчивое впечатление, что значение второй сопутствующей причины — ограниченные способности или слабое старание — низким не является. Если отвлечься от ситуации неудачи при выполнении легкого задания (когда уверенность в слабой выраженности обеих причин была невысокой), то данные Куна и Вайнера подтверждают предположение о том, что вывод об одной из двух причин (способности или старание) градуального результата деятельности достижения при наличии информации о значении другой из этих причин строится по компенсаторной схеме. Рис. 14.3. Зависимость средних значений уверенности в наличии или отсутствии высоких способностей или сильного старания при успехе и неудаче от знания испытуемым 1) об успехе или неудаче, 2) о выраженности одной из двух причин и 3) о степени сложности задания (Кип, Weiner, 1973, р. 203)
|
||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 230; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.2.5 (0.01 с.) |