Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Закон Максвелла для распределения молекул по скоростям.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Распределение большого числа молекул идеального газа, находящегося в состоянии термодинамического равновесия, по модулям скоростей подчиняется закону распределения Максвелла. Для получения дифференциального распределения Максвелла будем искать число частиц, скорости которых лежат в очень малом интервале d вблизи некоторой скорости . Пусть dn – число частиц в единице объёма, скорости которых лежат в интервале от до d Это число пропорционально интервалу скоростей d , а также пропорционально числу частиц в единице объёма. Можно записать так: , (7-10) где - плотность вероятности скорости, которая означает долю частиц в единице объёма, скорости которых лежат в единичном интервале скоростей вблизи скорости Тогда доля частиц, скорости которых лежат в интервале от до d может быть найдена как (7-11) Поскольку число частиц, даже в малых объёмах вещества, очень велико, то имеет смысл вероятности того, что любая частица идеального газа в единице объёма имеет скорость, лежащую в интервале скоростей от до d Распределение Максвелла в дифференциальной форме имеет вид: (7-12) Вид дифференциального распределения Максвелла при разных значениях температуры представлен на рис.7.6. Площадь заштрихованной криволинейной трапеции численно равна доле частиц, скорости которых лежат в интервале от до d Скорость , соответствующая максимуму плотности вероятности , называется наиболее вероятной скоростью. При выполняется равенство . Отсюда получаем, что наиболее вероятная скорость равна: или (7-13)
В отличие от распределения Гаусса, распределение Максвелла не симметрично относительно абсциссы максимума функции распределения. Это обусловлено наличием в формуле (7-12) квадрата модуля скорости, кроме экспоненты. При малых скоростях преобладает вклад , поэтому при этих скоростях вид кривой дифференциального распределения (рис.7-6) близок к параболе, при основной вклад вносит экспонента, которая убывает гораздо быстрее, чем растёт парабола. Площадь фигуры под кривой () на рис.7.6 равна единице (условие нормировки) и выражает факт существования молекулы. При возрастании температуры увеличивается наиболее вероятная скорость, а плотность вероятности, соответствующая этой скорости, уменьшается, но площадь фигуры под кривой остаётся неизменной. Интегральное распределение Максвелла показано на рисунке 7.7. Здесь N1/N – доля частиц, скорости которых превышают скорость . Таким образом, распределение Максвелла – это равновесное распределение идеального газа. Оно устанавливается благодаря столкновениям молекул, которые приводят систему к тепловому равновесию. Распределение Максвелла позволяет определить несколько средних скоростей: наиболее вероятную скорость, среднюю арифметическую скорость и среднюю квадратичную скорость. Скорость , соответствующая максимуму плотности вероятности , называют наиболее вероятной скоростью. Для идеального газа, находящегося в состоянии термодинамического равновесия при температуре Т, она определяется из условия и равна или . Средняя квадратичная скорость определяется как квадратный корень из среднего квадрата скорости и связана со средней кинетической энергией поступательного движения молекул. Чтобы найти её с помощью распределения Максвелла, нужно определить отношение суммы квадратов скоростей молекул, содержащихся в единице объёма, к числу молекул в этом объёме: . Для идеального газа, находящегося в состоянии термодинамического равновесия при температуре Т, она равна или (7-14) Среднюю арифметическую скорость определяют как отношение суммы всех скоростей всех молекул в единице объёма к числу молекул в единице объёма: . Для идеального газа, находящегося в состоянии термодинамического равновесия при температуре Т, она равна: .. (7-15) Эти скорости мало отличаются друг от друга по своим численным значениям: . Экспериментально равновесное распределение частиц по скоростям было обнаружено Штерном, Истерманом и Симпсоном в 1947 году.
|
||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 473; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.239.63 (0.007 с.) |