Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.



Волной принято называть распространение в пространстве изменений какой-либо физической величины. Изменения величины могут носить как периодический, так и непериодический характер. Для того, чтобы эти изменения могли распространяться в некоторой области пространства, необходимо наличие некоторых условий; в частности, в каждой точке рассматриваемой области физическая величина должна иметь определенное значение (принято говорить, что величина имеет полевой характер). Кроме того должна осуществляться взаимосвязь изменения физической величины в одной точке пространства с изменением этой же величины в соседних точках. Скорость распространения изменения определяется как природой изменяемой величины, так и свойствами среды, в которой распространяется это изменение. При этом определенную роль играет направление колебаний в волне. Если направление колебаний совпадает с направлением распространения волны, то такие волны называют продольными. Если же колебания происходят в плоскости, перпендикулярной направлению распространения волны, то такие волны являются поперечными. Если относительное изменение величины (т.е. изменение, деленное на саму величину) мало по сравнению с единицей, то такое изменение называют возмущением физической величины. Примером распространения возмущения могут служить волны на поверхности воды, возникающие при бросании в воду камешка. Образовавшиеся искажения поверхности воды (рис.6.1) начнут распространяться во все стороны, образуя своеобразные кольцевые структуры. Возникшая волна достигнет некоторой точки, отстоящей на расстояние х от места попадания камня в воду через время t = , где v - скорость распространения возмущения по поверхности воды.

Пусть в точке попадания камня в воду профиль образовавшегося возмущения является некоторой функцией от времени f (t). Ясно, что в любой точке поверхности, куда доходит образовавшееся возмущение, величина f (t) будет зависеть не только от времени, но также и от расстояния, однако для упрощения предположим, что возмущение сохраняет свою форму вне зависимости от пройденного расстояния. Тогда в любой точке поверхности, отстоящей от начальной точки на расстояние х, профиль возмущения f(t) будет изменяться во времени с некоторым запаздыванием на величину t = x/v, т.е. аргументом функции f(t) станет величина (t - х/v). Независимость величины возмущения от координаты означает, что f(t) = f(t - х/v). Волны, для которых имеет место последнее равенство называются плоскими. Если в начальной точке возмущение изменяется по гармоническому закону, то такая волна называется синусоидальной. Синусоидальная плоская волна записывается в таком виде:

f (х, t) = Аsinw(t - = Аsin (wt - ) = Asin (wt - kx), (6-1)

где - так называемое волновое число, a величина называется длиной волны. Аргумент синуса в уравнении (6-1) определяет фазу волны F (x,t). Поверхность, соединяющая все точки, фазы которых одинаковы, называется волновой поверхностью или фронтом волны. Если волна плоская, то фронтом волны является плоская поверхность. Волна, распространяющаяся во все стороны от точечного источника, называется сферической; очевидно, что для такой волны волновая поверхность представляет собой сферу. Если на какой-либо поверхности фаза постоянна, т.е. Ф(x,t) = const, скорость перемещения координаты, для которой фаза постоянна можно определить дифференцируя условие постоянства фазы: = 0, откуда

vфаз = , (6-2)

т.е. скорость распространения волны совпадает со скоростью распространения постоянной фазы. Направление колебаний в распространяющейся волне может совпадать с направлением волны - в этом случае волна называется продольной, но может быть и так, что распространение волны происходит в направлении, перпендикулярном плоскости, в которой совершаются колебания; тогда волны называются поперечными. Например, распространение звука - это продольные волны. Примером поперечных волн могут служить волны на поверхности воды.

Энергия волны

Распространение синусоидальной волны в пространстве сопровождается переносом энергии; в этом легко убедиться, вспомнив о разрушительной силе ударной волны при взрывах. Известно также, что волны морского прибоя способны разрушать крепчайшие каменные набережные. При изучении колебаний было установлено, что энергия колебательного движения пропорциональна квадрату амплитуды. Поэтому можно считать, что и в любом выбранном малом объеме пространства в области существования волны сосредоточена колебательная энергия, величина которой также пропорциональна квадрату амплитуды колебаний в волне. Для количественной характеристики энергии колебательного движения в волне обычно относят величину этой энергии к единице объема среды, через которую проходит волна. В этом случае принято говорить о плотности колебательной энергии w. Т.к. волна связана с «переносом» колебаний в пространстве, причем скорость этого «переноса» равна скорости распространения волны v, то плотность «перенесенной» энергии Á через единичную площадку в единицу времени равна:

Á = v w. (6-3)

Из (6-3) видно, что величина Á должна быть вектором, направление которого совпадает с направление скорости. Впервые этот вектор был введен профессором Московского Университета Н.А. Умовым, поэтому вектор Á принято называть вектором Умова.



Поделиться:


Последнее изменение этой страницы: 2016-12-16; просмотров: 371; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.81.240 (0.005 с.)