![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Скорость, ускорение и энергия колеблющегося тела.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Вернемся к формулам для смещения x, скорости v и ускорения a гармонического колебательного процесса. Пусть имеем тело массы «m», которое совершает под действием квазиупругой силы колебания по закону:
Видно, что скорость и ускорение также изменяются по гармоническому закону (графики приводились ранее) с периодом колебаний равным T. Из сравнения формул видно, что скорости v опережает смещение по фазе на Для ускорения зависимость иная. В каждый момент времени ускорение пропорционально смещению и находится с ним в противофазе. Это означает, что когда x=xmax, то ускорение тоже максимально, но отрицательно, т.е. при x=xmax, Квазиупругая сила, под действием которой происходит колебательное движение, является консервативной. Поэтому полная энергия гармонического колебательного движения должна оставаться постоянной. В процессе колебаний происходит превращение кинетической энергии в потенциальную и обратно (силами сопротивления пренебрегаем). Причем в моменты наибольшего отклонения о положения равновесия Определим, как со временем изменяется Ек и Uп для гармонического колебания
Т.к.
т.е. Используя формулы тригонометрии, можно получить выражения для
Здесь E – полная энергия системы. Из формул видно, что Ек и Uп изменяются с частотой 2w0, т.е. с частотой вдвое превышающей частоту гармонического колебания. Среднее значение квадрата sin и квадрата cos равно 1/2. Следовательно, среднее значение Eк совпадает со средним значением Uп и равно E/2.
Гармонический осциллятор. Систему, описываемую уравнением
Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия. Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания. Рассмотрим и обсудим ещё дополнительно к ним два вопроса.
Найдем импульс гармонического осциллятора. Продифференцируем выражение
В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:
Возведя эти выражения в квадрат и складывая, получим:
Найдем теперь площадь эллипса
Здесь Следовательно,
Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора. 8.6. Малые колебания системы вблизи положения равновесия. Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой. Потенциальная энергия такой системы будет функцией одной переменной ”x”: Ep=Ep(x). Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция Ep(x) будет иметь минимум при x=0.
Далее разложим функцию Ep(x) в ряд по степеням “x”, причем ограничимся случаем малых колебаний, поэтому высшими степенями “x” можно пренебречь. По формуле Маклорена:
(ввиду малости “x” остальными членами пренебрегаем) Так как E p(x) при x=0 имеет минимум, то Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0). Сила, действующая на систему, может быть определена по формуле: Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим. 8.7. Математический маятник. ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке. Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент Следовательно,
Рассмотрим малые колебания ( Решением этого уравнения будет функция Следовательно, при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону. Как следует из формулы
Физический маятник.
При отклонении маятника от положения равновесия на угол j возникает вращательный момент, стремящийся вернуть маятник в положение равновесия (рис. 8.8). Этот момент равен
где m – масса маятника; l – расстояние от точки подвеса «О» до центра инерции маятника «С». Обозначим J – момент инерции маятника относительно оси, проходящей через точку подвеса, тогда
где Период колебаний физического маятника будет определяться выражением:
Сопоставляя это выражение с периодом колебаний математического маятника
ОПРЕДЕЛЕНИЕ: Приведенная длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.
Затухающие колебания. При выводе уравнения гармонических колебаний считалось, что колеблющаяся точка находится под действием только квазиупругой силы. Во всякой реальной колебательной системе всегда имеются силы сопротивления (например, это может быть сила трения в точке подвеса, сопротивление среды, в которой совершаются колебания). Действие этих сил приводит к тому, что энергия колеблющейся системы (или точки) будет непрерывно убывать. Эта убыль энергии будет равна работе против сил трения и сопротивления. Т.к. полная энергия колебаний пропорциональна квадрату амплитуды Итак, затухание колебаний в любой колебательной системе (механической, электрической и т.п.) обусловлено потерями энергии в этой системе. Потери энергии колебаний в механических колебательных системах происходят из-за трения (внешнего и внутреннего) и излучения упругих волн в окружающую среду; в электрических – из-за наличия активного сопротивления проводников и т.п. Рассмотрим свободные (или собственные) колебания. Это значит, что система, будучи выведена из положения равновесия в результате внешнего воздействия, в дальнейшем предоставлена самой себе и находится под воздействием только квазиупругой силы F=-kx и силы сопротивления среды, значит она будет совершать затухающие колебания вдоль оси “x”. Ограничимся рассмотрением малых колебаний, тогда и скорость (v) системы будет малой, а при небольших скоростях сила сопротивления пропорциональна скорости:
где r – коэффициент сопротивления среды. Знак минус (“-”), т.к. Под действием сил F и f тело приобретает ускорение “a”, и для колеблющегося тела уравнение II-закона Ньютона имеет вид:
Обозначим
Здесь w0 – та частота, с которой совершались бы свободные колебания системы при отсутствии сопротивления среды (т.е. при r = 0). Эта частота называется собственной частотой колебаний системы. b – коэффициент затухания колебаний (зависит от свойств данной системы и среды).
Наличие сопротивления среды приводит к тому, что амплитуда колебаний со временем будет уменьшаться. Поэтому будем искать решение уравнения (8.15) в виде: где a(t) – некоторая функция времени. Продифференцируем это выражение по времени и найдем После подстановки этих выражений в уравнение (8.15) и несложных преобразований придем к следующему соотношению:
Для того чтобы уравнение удовлетворялось при любых значения “t”, необходимо равенство нулю коэффициентов при “ sin ” и ” cos ”. Т.е. приходим к двум следующим уравнениям:
Первое уравнение представим в виде:
После интегрирования получим
Отсюда При w0 > b, величина w будет вещественной и тогда решение дифференциального уравнения
Таким образом, при не слишком большом затухании
График этой функции показан на рисунке 8.9. Пунктирными линиями показаны пределы, в которых находится смещение колеблющейся точки. Движение такой системы можно рассматривать как гармоническое колебание с частотой w и амплитудой, изменяющееся по закону Скорость затухания колебаний определяется величиной Следовательно, коэффициент затухания равен обратной величине того промежутка времени, за который амплитуда колебаний уменьшается в “e” раз. С учетом того, что
При незначительном сопротивлении среды Для характеристики колебательной системы (а именно: убывания амплитуды колебаний в зависимости от числа колебаний) вводится величина, называемая логарифмическим декрементом затухания (l). Отношение значений амплитуд, соответствующих моментам времени, отличающимся на период равно
Следовательно, логарифмический декремент затухания равен обратной Для характеристики колебательной системы также часто употребляется величина
Как известно, энергия колеблющейся системы пропорциональна квадрату амплитуды. Поэтому энергия системы при затухающих колебаниях убывает со временем по закону
где E 0 – значение энергии при t = 0. Продифференцировав это выражение по “t”, получим скорость возрастания энергии
Изменив знак на обратный, найдем скорость убывания энергии: Если энергия мало изменяется за время равное периоду колебаний, то убыль энергии за период будет равна С учетом Из формулы для периода колебаний И последнее, математический анализ показывает, что при условии
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-11; просмотров: 705; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.97.9.174 (0.013 с.) |