Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Статистическое толкование второго начала термодинамикиСодержание книги
Поиск на нашем сайте Состояние макроскопического тела (т.е. тела, образованного огромным числом молекул) может быть задано с помощью объема, давления и температуры. Данное макроскопическое состояние газа с определенными средними значениями параметров представляет собой непрерывную Так как система стремится к равномерному распределению молекул по объему, то согласно рассмотренному примеру она должна стремиться к максимуму термодинамической вероятности. С другой стороны, энтропия системы тоже стремится к максимальному значению. Следовательно, существует связь между энтропией и термодинамической вероятностью, теоретически полученная Больцманом: S = k ln W, (10.28) где k - постоянная Больцмана. Второе начало термодинамики приобретает следующий статистический смысл: изолированная система самопроизвольно может переходить только от состояний менее вероятных к состояниям более вероятным.
Реальные газы Уравнение Ван-дер-Ваальса Поведение реальных газов при их малых плотностях хорошо описывается уравнением Клапейрона:
где
где Vm - объем моля реального газа. Силы притяжения со стороны других молекул вызывают уменьшение скорости молекулы, соударяющейся со стенкой, поэтому силы взаимодействия молекул уменьшают давление газа на стенки сосуда на величину pi . Давление реального газа запишется в виде p = (p + p i )·(Vm - b) = RT. (11.3) Величина pi зависит от объема газа. Если рассмотреть две половинки малого объема газа, то при увеличении количества молекул в них в n раз сила их взаимодействия f увеличится в n2 раз (рис. 11.1). Следовательно, величина pi ~ r 2, где r - плотность газа. Учитывая, что при неизменной массе газа величина r обратно пропорциональна объему V, получим pi = a / (p + a /
Итак, уравнение Ван-дер-Ваальса позволило предсказать наличие неустойчивых состояний и неплохо количественно описать переход вещества из газообразного состояния в жидкое.
|
|||
|
Последнее изменение этой страницы: 2016-12-11; просмотров: 746; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.156 (0.01 с.) |