Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Работа и теплота. Первое начало термодинамикиСодержание книги
Поиск на нашем сайте
Внутренняя энергия газа (и другой термодинамической системы) может изменяться в основном за счет двух процессов: совершения над газом работы и сообщением ему количества тепла Q. Так как состояние газа может одинаково изменяться от совершенной над ним работы и сообщенного ему количества тепла Q, то работа и теплота являются эквивалентными формами передачи энергии. Теплота - это форма передачи энергии на уровне микроскопических процессов, когда, например, молекулы газа, соударяясь с разогретыми стенками (молекулами) сосуда, получают от них дополнительную кинетическую энергию. Работа над газом - это передача энергии в форме макропроцессов. Когда поршень, перемещаясь в некотором цилиндре, сжимает газ, то молекулам газа за счет движения поршня передается дополнительная энергия и газ нагревается. Исторически развитие термодинамики было связано с необходимостью теоретического объяснения работы теплового двигателя. При сжигании топлива выделялось определенное количество тепла, и некоторая часть его DQ (рис.10.2) передавалась рабочему телу (обычно газу). Газ нагревался, и его внутренняя энергия увеличивалась на величину DU. Расширяясь, газ совершал работу DA. Отсюда принято считать DQ > 0, когда термодинамическая система получает тепло, и DA > 0, когда эта система совершает работу. Огромная совокупность опытных фактов с учетом законов сохранения показывала, что в термодинамической системе, в которой протекают тепловые и механические процессы, всегда должно выполняться равенство DQ = DU + DA. (10.3) Уравнение (10.3) представляет собой содержание первого начала (закона) термодинамики. Словами его можно выразить следующим образом: количество тепла DQ, сообщенное системе, идет на приращение внутренней энергии системы DU и на совершение системой работы DA над внешними телами. Следует отметить, что в равенстве (10.3) величина U является функцией состояния и однозначно определяется термодинамическими параметрами состояния. Величины Q и A не есть функции состояния. Они зависят не только от начального и конечного состояния системы, но и от пути изменения ее состояния. Из равенства (10.3) следует, что единицей измерения тепла служит джоуль. Работа газовых изопроцессов Пусть газ заключен в цилиндрический сосуд, закрытый плотно пригнанным и легко скользящим поршнем (рис.10.3). При расширении газ будет совершать работу DA = FDh, где F - сила, с которой газ действует на площадь поршня S; Dh - перемещение поршня при расширении газа. Приращение объема газа DV = SDh. Подставляя силу F = pS и DV в выражение для работы, получим DA = pDV. При расширении газа работа будет положительной, при сжатии - отрицательной. Если давление газа при совершении работы изменяется, то находят работу при каждом элементарном изменении объема dA = pdV (10.4) суммируют все элементарные работы для этого газового процесса. Полная работа A = , (10.5) где V1 - начальный объем газа, V2 - его конечный объем. Применим формулу (10.5) для расчета работы изопроцессов. 1. Рассмотрим изохорический процесс. Для этого процесса объем газа V = const, dV = 0 и A = 0. Газ не совершает работу. Первое начало термодинамики (10.3) будет иметь вид DQ = DU, т.е. все тепло, сообщенное газу, пойдет на его нагревание. 2. Рассмотрим изобарический процесс. Так как давление не изменяется, то его как постоянную величину можно вынести из под знака интеграла (10.5). Получим A = p(V2 - V1) или с учетом уравнения Менделеева-Клапейрона pV = (m /m)RT, записанного для начального и конечного состояний, получим выражение для работы изобарического процесса A = (m /m)R(T2 - T1). (10.6) 3. Рассмотрим изотермический процесс. Так как температура постоянна, то внутренняя энергия идеального газа не изменяется: DU = 0. Первое начало термодинамики (10.3) будет иметь вид DQ = DA, т.е. все тепло, подведенное к системе, будет затрачено на совершение ею работы. Используя уравнение состояния идеального газа (10.6) и учтя, что T = const, запишем выражение (10.5) для работы изотермического процесса в виде A = = (m /m)RT = (m /m)RT ln(V2 /V1). (10.7)
|
||||
Последнее изменение этой страницы: 2016-12-11; просмотров: 324; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.206.229 (0.007 с.) |