Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Введение в искусственный интеллектСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Начало современного этапа развития систем искусственного интеллекта (ИИ) может быть отнесено к середине 50-х гг. Этому способствовала программа, разработанная А.Ньюэллом и предназначенная для доказательства теорем в исчислении высказываний и названная «ЛОГИК-ТЕОРЕТИК». Некоторые авторы называют эту систему экспертной и связывают определение ее назначения с анализом ее возможностей, проведенных Клодом Шенноном и Марви-ном Минским. Эти работы положили начало первому этапу исследований в области ИИ, связанному с разработкой программ, решающих задачи на основе применения разнообразных эвристических методов. Эвристика — совокупность логических приемов и методических правил, теоретического исследования и отыскания истины, методика поиска доказательств. Эвристические правила — неформальные правила, используемые в целях повышения эффективности поиска в данной предметной области. Данный метод решения задачи при этом рассматривался как свойственный человеческому мышлению «вообще», для которого характерно возникновение «догадок» о пути решения с последующей проверкой их. Эвристическому методу противопоставлялся используемый в ЭВМ алгоритмический (процедуральный) метод, который интерпретировался как механическое осуществление заданной последовательности шагов, детерминированно приводящей к правильному ответу. Такая трактовка эвристических методов решения задачи и обусловила появление и распространение термина ИИ. Второй этап исследований в области ИИ — создание интегральных роботов. Третий этап исследований в области ИИ характеризуется смещением центра внимания исследователей с проблем создания автономно функционирующих систем, самостоятельно или в условиях ограниченного общения с человеком решающих в реальной среде поставленные задачи, к созданию человеко-машинных систем, интегрирующих в единое целое интеллект человека и способности ЭВМ для достижения общей цели - решения задачи, поставленной перед подобной системой. Проблематика ИИ довольно обширна. Список дисциплин по искусственному интеллекту постоянно увеличивается. Сегодня в него входят представление знаний, решение задач, экспертные системы, средства общения с ЭВМ на естественном языке, обучение, когнитивное моделирование, стратегические игры, обработка визуальной информации и робототехника. Представление знаний является наиболее важной областью исследований по искусственному интеллекту. Это основа всех остальных дисциплин. Знания имеют форму описаний объектов, взаимосвязей и процедур. Наличие адекватных знаний и способность их эффективно использовать означают «умение». Создание общей теории или метода представления знаний является стратегической проблемой. Такая теория открыла бы возможность накопления знаний, которые нужны ежедневно для решения все новых и новых задач. Однако для достижения поставленной цели необходимо найти способ выражения общих закономерностей предметных областей (ПО), в чем и состоит суть проблемы представления знаний. Решение задач сводится к поиску пути из некоторой исходной точки в целевую. Человек делает это весьма эффективно с помощью дедуктивного логического вывода (рассуждений), процедурального анализа, аналогии и индукции. Люди способны также учиться на собственном опыте. Компьютеры в общем случае решают задачи только с использованием дедуктивного логического вывода и процедурального анализа. Тип задачи определяет метод, наиболее подходящий для ее решения. Задачи, которые сводятся к процедуральному анализу, вообще говоря, лучше всего решаются на компьютере. Учетные и аналитические задачи служат примерами процедуральных задач, решаемых компьютером быстрее и надежнее, чем человеком. Задачи же, связанные с использованием аналогии или индукции, эффективнее решаются человеком. Задачи, требующие дедуктивных рассуждений, представляются наиболее вероятными кандидатами для решения с помощью экспертных систем (систем, основанных на знаниях). Экспертные системы представляют собой класс компьютерных программ, которые выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от программ, использующих процедуральный анализ, экспертные системы решают задачи в узкой предметной области (конкретной области экспертизы) на основе логических рассуждений. Такие системы часто способны найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, что может быть полезным в тех ситуациях, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа. Машины обладают своим собственным языком для представления знаний и решения задач. Язык можно определить как набор символов, используемых для представления знаний (семантика), и правил, предназначенных для обработки этих символов (синтаксис) и решения задач. Человек работает наиболее эффективно, если ом владеет специальными языками, которые развиваются до уровня потребностей конкретной предметной области. Если правила трансляции с естественного языка в машинный и наоборот выражены в виде совокупности знаний (символов и процедур), то логично предположить, что могут быть разработаны средства, позволяющие компьютеру понимать постановку задачи на естественном языке, а затем на естественном же языке выдавать ее решение. Это основная тема исследований по разработке средств общения с ЭВМ на естественном языке. Здесь можно выделить четыре ключевые проблемы. Машинный перевод — использование компьютеров для перевода текстов с одного языка на другой. Информационный поиск - обеспечение с помощью компьютеров доступа к информации по конкретной тематике, хранящейся в большой базе данных. Генерация документов — применение компьютеров для преобразования документов, имеющих определенную форму или заданных на специализированном языке, в эквивалентный документ в другой форме или на другом языке. Взаимодействие с компьютером - организация диалога между пользователем и компьютером. Считается, что способностью обучения должна быть наделена практически каждая прикладная программа, которая может понадобиться пользователю. Десять-пятнадцать лет назад большая часть обработки данных при решении задач проводилась программистами вычислительных центров. Программисты фактически выполняли роль посредников, являясь как бы связующим звеном между ЭВМ и теми, кто использовал полученные данные и принимал решения. С появлением персонального компьютера взаимоотношения между пользователем и вычислительной техникой, а следовательно, и роль программиста резко изменились. Вместо того чтобы заставлять пользователя преодолевать сложности программирования, проще обучить компьютер сложностям выполнения конкретной задачи, стоящей перед пользователем. Это, конечно, не означает, что необходимость в программистах отпадет, но несколько меняет их роль во взаимоотношениях между компьютером и пользователями. Целью когнитивного моделирования является разработка теории, концепций и моделей человеческого мышления и его функций. Оно позволяет реализовывать не только диагностические и лечебные функции, но и выявлять процессы, протекающие в сознании человека при решении задач. Однако вовсе не следует, что лучшими ком-ггьютерами являются те, которые моделируют работу человеческого мозга, но можно сделать вывод о том, какого типа компьютеры нужны, как спроектировать компьютер, который бы расширил возможности мышления человека и позволил бы ему более эффективно решать задачи. Современные роботы уже облегчили труд (особенно неквалифицированный) многих рабочих, занятых в сфере производства, безупречно выполняя свою работу. Исследования в области робототехники входят как составная часть в исследования по искусственному интеллекту, ставящие целью оснастить компьютеры средствами визуальной обработки и манипулирования объектами в некоторой среде. Эти исследования ведутся в трех основных направлениях: разработка воспринимающих элементов (в частности, для визуальной информации) и распознавание информации, поступающей от систем восприятия; создание манипуляторов и систем управления ими; выявление эвристик для решения задач перемещения в пространстве и манипулирования объектами (планирование деятельности).
|
||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 434; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.112.15 (0.008 с.) |