Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос 1.Обучение детей количественному счёту в детском саду

Поиск

1. Теоретические вопросы: Цель обучения счёту. Приёмы обучения количественному счёту. Ошибки детей при счёте. Роль слухового и речевого анализаторов на первом этапе обучения. Отличие обучения количественному счёту старших дошкольников от младших. Приёмы обучения независимости числа от величины, расстояния, расположения в пространстве, направления счёта. Закрепление знаний о количественном счёте в повседневной деятельности.

2.Практическое задание: Привести пример игрового приёма по следующей программной задаче: познакомить детей с числом 3, учить детей считать до 3-х.

3. Основные понятия: счет, количественный счет, приемы обучения.

4.Основные исследователи: А.М.Леушина, Н.А.Менчинская, Л.Ф.Обухова, В.В.Данилова, Н.И.Чуприкова, З.С.Пигулевская.

 

Теоретические вопросы.

Работа с множествами, их сравнение путём взаимного сопоставления элементов одного множества с элементами другого создаёт основу для перехода к обучению счётной деятельности.

Счёт – это установление взаимно однозначного соответствия между элементами множества и отрезком натурального ряда (числами – абстрактным математическим понятием).

Счётная деятельность – называние числительных по порядку и соотнесение их каждому элементу множества с выделением итогового числа.

Цель обучения счёту состоит не только в обучении умению называть числительные по порядку, отвечать на вопрос «сколько?», называя при этом итог счёта, но и знакомстве с образованием каждого последующего и предыдущего числа на основе добавления предмета к одному из сравниваемых множеств.

Приёмы обучения количественному счёту.

Обучение счёту детей среднего дошкольного возраста ведётся в пределах 5 и обязательно строится на основе сравнения двух групп предметов, расположенных параллельно в два ряда друг под другом. Сравниваемые группы должны отличаться только одним элементом, т.е. отражать последовательные числа: 1 и 2, 2 и 3, 3 и 4, 4 и 5. Это создаёт наглядную основу для усвоения принципа образования каждого последующего (предыдущего) числа натурального ряда, помогает понять, почему одна группа предметов именуется одним числом, а другая – другим. Обучаем детей приёмам счёта предметов по образцу («делай, как я»), сначала отрабатываем выполнение правил, а после их усвоения отменяя внешние жесты. Работа ведётся на большом разнообразии наглядного материала.

Воспитатель многократно показывает и разъясняет правила счёта:

- называть числительные по порядку, начиная со слова «один»,

- дотрагиваться до каждого предмета ведущей рукой слева направо,

- одному предмету соотносить только одно число,

- в конце делать обобщающий жест и ещё раз назвать последнее число («всего пять предметов»).

Эти правила необходимы, чтобы дети поняли сущность счёта, а воспитатель смог предупредить или выявить ошибки (в счёте, а не в правилах).

При обучении счёту у детей могут наблюдаться следующие ошибки:

- называют числительные не по порядку, начинают со слова «раз»;

- пропускают предметы, дотрагиваются до одного предмета дважды;

- считают свои движения, а не предметы, нет координации между словом и движением;

- не выделяют итогового числа («безытоговый счёт»), не могут ответить на вопрос «сколько?»;

- затрудняются в согласовании числительных с существительными;

- называют после каждого числительного предмет;

- путают количественные и порядковые числительные.

Когда дети научатся пересчитывать предметы, можно обучать их отсчёту предметов. Цель: научить отсчитывать нужное количество предметов из большего.

1. Отсчёт по образцу: детям предлагается посчитать предметы на образце и запомнить их количество, затем отсчитать столько же предметов.

2. Отсчёт по названному числу: «Отложи пять кругов и ещё один. Сколько получилось?» (знакомство с образованием соседних чисел).

Счёт при участии различных анализаторов. Наряду со счётом предметов при участии зрительного анализатора нужно упражнять детей в счёте на слух, на ощупь, а также в счёте движений. Например, воспитатель предлагает детям посчитать, сколько раз он ударит в бубен, по барабану, столу и т.п., сколько сделает шагов, или предлагает выполнить столько движений, сколько предметов нарисовано на карточке, хлопнуть в ладоши столько раз, сколько раз ударит молоточек. Затем следует учить детей производить движения по названному числу: «Присядьте четыре раза», «Подбросьте мяч вверх три раза» и т.п.

В старшем дошкольном возрасте, одновременно с образованием чисел в пределах 10, необходимо показать независимость числа от различных признаков предметов: величины, расстояния, расположения в пространстве, направления счёта.

Чтобы показать независимость числа от размеров предметов, берутся 2 группы мячей равных по количеству (по 5), но отличных по размеру (большие и маленькие). Не обязательно предметы выкладывать в ряд. Воспитатель спрашивает: «Одинаково ли количество мячей?» Чаще всего дети думают, что больших мячей больше. Предлагается сравнить их путём приложения – один к одному, либо путём пересчёта, а лучше и то и другое. Затем следует задать вопросы: «Почему многие подумали, что больших мячей больше, чем маленьких? Может ли больших и маленьких предметов быть поровну? Изменилось ли число предметов от того, что они разного размера? В каком случае число предметов будет изменяться?» Затем с помощью прибавления (убавления) предмета к множеству, нужно показать образование последующего (предыдущего) числа. Вопросы: «Сколько стало мячей?», «Как получилось 6 мячей? Как образуется число 6? Каких мячей больше? Какое число больше 5 или 6?». Подводим детей к выводу, что предметы можно брать большие и маленькие, а получать одно и то же количество.

Чтобы показать независимость числа от расстояния между предметами, берутся одинаковые группы предметов, равные по количеству, но в одной группе предметы расставляются на большом расстоянии друг от друга, а в другой группе - рядом. Вопросы аналогичны, но обращается внимание на расстояние между предметами.

Чтобы показать независимость числа от расположения предметов в пространстве, берутся 2 группы одинаковых предметов, равных по количеству, но расположенных по-разному (вопросы аналогичны), разница в следующем – подводим детей к выводу, что одно и то же количество предметов можно расположить по разному, число от этого не изменится.

Чтобы познакомить детей с независимостью числа от направления счёта, необходимо предложить детям посчитать предметы слева направо и наоборот. Важно запомнить число. Можно в конце каждого пересчёта поставить цифру. Воспитатель спрашивает: «Изменилось ли число от того, что предметы считают в разных направлениях?». Подводим детей к выводу, что предметы можно считать в любом направлении – число от этого не изменится.

Наиболее сложно детям считать предметы, расположенные по кругу. Лучше всего для этой цели брать предметы отличающиеся каким-либо признаком. Воспитатель предлагает выбрать предмет, от которого они начнут считать. Спрашиваем: в какую сторону лучше считать – по часовой стрелке или против? Подводим к тому, что считать можно в любом направлении, т.к. число от этого не меняется.

Пересчёт одних и тех же предметов разными способами убеждает детей в том, что необходимо хорошо запомнить предмет, с которого был начат счёт и вести его в любом направлении, но при этом надо не пропустить ни один предмет и ни один не сосчитать дважды.

Для закрепления навыков счёта воспитатель постоянно использует большое количество игр и упражнений (например, «Найди пару», «Найди свой домик» и др.). В играх с куклами, например, дети выясняют, хватит ли посуды для приёма гостей, одежды для того, чтобы собрать кукол на прогулку, и пр. В игре в «магазин» пользуются чеками-карточками, на которых нарисовано определённое количество предметов или кружков. В быту часто возникают ситуации, требующие выполнения счёта: по заданию воспитателя дети выясняют, хватит ли тех или иных пособий или вещей детям, сидящим за одним столом (коробок с карандашами, подставок, тарелок и пр.). Дети считают игрушки, которые взяли на прогулку.

Практическое задание: Привести пример игрового приёма по следующей программной задаче: познакомить детей с числом 3, учить детей считать до 3-х.

Воспитатель на нижней полоске размещает две ёлочки.

- Сколько ёлочек? (счёт хором до двух)

- На каждую ёлочку прискакали белочки. Возьмите столько же белочек, сколько ёлочек.

Один из детей выставляет на верхней полоске точно над ёлочкой – две белочки, считает вслух.

- Что можно рассказать о ёлочках и белочках? (Белочек столько же сколько ёлочек; ёлочек столько, сколько клоунов; по 2).

После этого на верхнюю полоску воспитатель ставит ещё одну белочку (демонстрирует образование последующего числа).

- Прискакала ещё одна белочка. Больше стало белочек или меньше? (больше).

- Ёлочек две, а сколько же белочек? Нужно посчитать.

Воспитатель показывает образец счёта: «Одна, две, три - всего 3 белочки». Интонацией педагог выделяет итог счёта и обводит изображения белочек круговым жестом. Предлагает повторить, сколько всего белочек.

- Как получили 3 белочки? (было 2, прискакала ещё одна, т.е. к 2 прибавили 1.)

- Чего больше (меньше) – ёлочек или белочек? Почему? (больше белочек, одной белочке не хватило ёлочки).

- Что больше (меньше) – 2 или 3?

- Как сделать поровну? (убрать одну белочку или добавить одну ёлочку).

Воспитатель добавляет ещё одну ёлочку.

- Сколько стало ёлочек? (предлагает детям пересчитать).

- Поровну ли стало белочек и ёлочек? По скольку же белочек и ёлочек? Как получилось 3 ёлочки?

Затем необходимо показать образование предыдущего числа. Для этого из какого-либо множества убирается 1 предмет. Вопросы аналогичные.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 3775; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.56.251 (0.011 с.)