ТОП 10:

Основные теории патогенеза хронического панкреатита



За более чем столетнюю историю изучения патогенеза хронического пан­креатита было выдвинуто множество гипотез патогенеза, ряд из которых был опровергнут со временем, другие были отчасти подтверждены клини­ческими и экспериментальными исследованиями и стали рассматриваться в качестве теорий. Однако все элементы патогенеза не ясны до сих пор. Возможно, это обусловлено множеством этиологических факторов разви­тия панкреатита, часть из которых имеет различные патогенетические осо­бенности, без учета которых выдвигались и опровергались гипотезы в 60— 70-е годы прошлого века. Открытия последних 10 лет, в частности опреде­ление наследственного и аутоиммунного генеза заболевания, расширило наши представления о патогенезе ХП.

Большинство существующих в настоящее время теорий имеют многие общие элементы, различаясь отдельными аспектами патогенеза. В частно­сти, многими исследователями признается патогенетическое значение внутрипротоковой гипертензии и интрадуктального образования белково-кальциевых преципитатов, однако механизмы их развития, по мнению раз­ных авторов, отличаются. Несмотря на доминирующую длительное время гипотезу общего протока Е. Opie, модернизированную в дальнейшем в гидравлическую теорию, одной из первых экспериментальных моделей стала модель развития алкогольного ХП, о которой мы уже упоминали ра­нее, что отчасти было обусловлено широкой распространенностью пан­креатитов алкогольной этиологии [58, 81, 157].

Французская школа добавила к данной теории новый патогенетический механизм поражения ПЖ, и появилась так называемая литостатиновая гипо­теза развития ХП [210]. С позиций данной гипотезы, ХП —это хроническое заболевание, сопровождающееся кальцификацией паренхимы ПЖ и появле­нием конкрементов протоковой системы, индуцированное алкоголем и/или генетически обусловленными дефектами литостатина — белка, способного к солюбилизации кальция в панкреатическом соке. Однако в настоящее время не создано экспериментальных моделей, подтверждающих данную гипотезу [55]. Кроме того, существуют клинические [79] и биохимические факты [80], которые ставят под сомнение ее правоту. В течение многих лет одной из ве­дущих теорий патогенеза ХП была гидравлическая теория, доказанная на мно­жестве экспериментальных моделей, в дальнейшем появились аутоиммунная теория и наследственные теории, о которых мы писали в предыдущей главе. Ниже будут кратко рассмотрим основные патофизиологические теории раз­вития ХП, большинство из которых актуальны и в настоящее время.


120 • ХРОНИЧЕСКИЙ ПАНКРЕАТИТ

3.1.1. Теория общего протока

Теория общего протока, как мы уже указывали ранее, была предложена E.Opie в 1901 г. [185]. Причиной разработки данной теории послужило об­наружение конкремента в фатеровом сосочке у пациента, умершего от ОП. Было предположено, что анатомическая близость мест впадения желчного и панкреатического протоков в двенадцатиперстную кишку в силу разно­образных причин может способствовать рефлюксу желчи в ГПП и повреж­дению ПЖ детергентами, содержащимися в желчи. E.Opie предположил, что наличие длинного общего протока позволяет желчным камням прохо­дить место соединения общего желчного и панкреатического протоков, вызывая обтурацию общего желчного протока в области сфинктера и за­брос желчи в ГПП.

Теория общего протока была воспринята неоднозначно. Во-первых, в большинстве случаев общий желчный проток короткий, поэтому попав­ший в него конкремент будет блокировать оба протока. Во-вторых, давле­ние в ГПП обычно выше, чем в общем желчном протоке, и поэтому в обо­их случаях рефлюкс желчи в ГПП не должен происходить. В-третьих, су­ществуют указания, что для развития ХП необходимы патологические из­менения самой желчи [20, 44]. Точные механизмы, активирующие фермен­ты в клетках ацинусов при обструкции, не известны [50]. Возможно, при холелитиазе желчь содержит значительные количества продуктов ПОЛ, что и придает ей особые агрессивные свойства при рефлюксе в панкреатиче­ские протоки [29].

Наиболее вероятно, что билиарные конкременты блокируют только ГПП, что приводит к протоковой гипертензии и развитию ОП либо, при неполной обструкции,— к развитию ХП. Затруднение оттока панкреатиче­ского секрета в этом случае может быть обусловлено именно мобильным («вентильным») конкрементом, провоцирующим периампулярное воспале­ние, отек и спазм сфинктера [50].

Далее мы перейдем к более обоснованной гидравлической теории пато­генеза ХП, являющейся, по сути, прямым историческим «наследником» теории общего протока.

3.1.2. Гидравлические теории (теории обструкции протоков поджелудочной железы)

Многочисленные исследования обнаружили, что частичная обструкция панкреатических протоков в опытах на собаках [154, 205], крысах [189] и свиньях [197] приводила к повреждениям панкреатической паренхимы, весьма похожим на те, которые наблюдаются при ХП у человека. При этом хроническое злоупотребление алкоголем потенцирует повреждения ПЖ, ускоряет их начало и способствует их необратимости [232]. В результате дальнейших исследований было выявлено, что:

1) продолжительность обструкции протоков прямо коррелирует с тяже­
стью повреждений ПЖ;

2) протоковая обструкция потенцирует развитие конкрементов в прото­
ковой системе более чем у половины экспериментальных животных;

3) полный блок ГПП приводит к развитию атрофии панкреатической
паренхимы;

4) восстановление панкреатического оттока предотвращает образование
конкрементов в протоках и гистологическую модификацию паренхимы ПЖ.


Глава 3. Универсальные патогенетические механизмы развития ХП • 121

Таким образом, большинство исследователей стало представлять реали­зацию совокупности этиологических факторов ХП в патогенезе заболева­ния аналогично тому, как это происходит в эксперименте при блоке пан­креатических протоков. Следует отметить, что панкреатостаз, действитель­но, облегчает осаждение кристаллов кальция в протоковой системе ПЖ с последующей кальцификацией белкового секрета, развитием вторичного блока и прогрессированием обструкции. Ацинарный комплекс при этом подвергается глубоким ультраструктурным изменениям, потенцируется воспалительный процесс с последующим развитием фиброза, вовлекающе­го все железистые элементы дистальнее места обструкции, что, естествен­но, сопровождается уменьшением синтеза пищеварительных ферментов.

В присутствии литогенных факторов, например алкоголя и курения, ли­бо на фоне наследственной предрасположенности (низкий уровень лито-статина, определенные мутации), процесс прогрессирования ХП может быть ускорен и проявляться ранним началом кальцификации, внешнесек-реторной и инкреторной недостаточности ПЖ [231].

Обструкция может быть на уровне ГПП — так называемая теория боль­шого протока, либо на уровне более мелких протоков — теория малых про­токов.

Главной и наиболее частой причиной стриктуры может быть стеноз фа-терова сосочка, возможно, вызванный билиарным литиазом, как и предпо­лагал в начале прошлого столетия Е. Opie [186]. Другие возможные причи­ны обструкции — опухоли ПЖ (аденокарцинома, муцинозные опухоли, кисты, эндокринные опухоли), опухоли собственно фатерова сосочка, сте­ноз ГПП как следствие перенесенного некротизирующего панкреатита.

У больных НП блокада протоков ПЖ может вызывать очередную атаку панкреатита на фоне мутаций гена катионического трипсиногена, спо­собствующих быстрому прогрессированию аутодеструкции ПЖ. У больных НП при наличии мутаций CFTR-гена заболевание может развиваться на фоне блокады протоков различного порядка слизистыми пробками.

Классическим и наиболее известным примером гидравлической теории малых протоков является теория Н. Sarles (теория интрадуктального литиа-за, или теория нарушенной секреции) [209]. Согласно этой теории, алко­голь повышает содержание в панкреатическом соке белка и, таким обра­зом, способствует увеличению вязкости панкреатического секрета. В этих условиях происходит преципитация белка во внутридольковых или вста­вочных протоках. Образовавшиеся камни (бляшки), содержащие различ­ные протеины (ферменты, гликопротеины), кислые мукополисахариды, за­полняют протоки. Развивается обструкция внутридольковых или вставоч­ных протоков с последующим повреждением эпителия [128], его атрофией, развитием локального стеноза или образованием фиброзных рубцов. В ткани ПЖ, дренируемой поврежденными протоками, появляются паренхи­матозные изменения, которые могут принимать форму кистозного переро­ждения или атрофии ацинарных долек. В конечном итоге прогрессирую­щий фиброз, начавшийся вокруг протока, распространяется на всю доль­ку, вызывает замещение ацинарной ткани и приводит к хроническому кальцифицирующему панкреатиту. Однако имеющиеся данные о том, что бляшки преимущественно состоят из десквамированного эпителия (а не протеинов), отчасти опровергают данную теорию [237].

Итак, вне зависимости от уровня блока и его исходного механизма, не­достаточный отток панкреатического сока в сочетании с повышением кон­центрации белка и вязкости секрета приводит к преципитации белка с об­разованием «белковых пробок», которые частично или полностью вызыва-


122 • ХРОНИЧЕСКИЙ ПАНКРЕАТИТ

ют закупорку различных отделов панкреатических протоков. Большое зна­чение имеет увеличение рН панкреатического сока, наблюдаемое в боль­шинстве случаев ХП, что приводит к снижению устойчивости ионов каль­ция в секрете ПЖ и тканевой жидкости. Таким образом, происходит более интенсивное образование карбоната и трехзамещенного фосфата кальция, вероятность выпадения которых в осадок возрастает в весьма значительной степени [17].

В условиях обструкции возникает компенсаторное расширение пан­креатических протоков проксимальнее места их закупорки. В последую­щем при сохранении секреторной деятельности ПЖ панкреатический сек­рет инфильтрирует окружающую промежуточную ткань с формированием отека железы. В данной ситуации существенно нарушается метаболизм клеток органа: имеют место гипоксия и дезинтеграция клеток, увеличение количества внутриклеточного кальция, нарушение обмена адениловых нуклеотидов, активация процессов липолиза и высвобождение лизосомаль-ных ферментов в цитоплазму, особенно в условиях внутриклеточного аци­доза. Важная роль отводится повышению проницаемости лизосомальных мембран, поскольку их лабилизация и выход лизосомальных ферментов в цитоплазму потенцируют реакции повреждения. Установлено, что лизосо-мальные гидролазы ацинарных клеток осуществляют интрапанкреатиче-скую активацию зимогенов, в частности трипсиногена. Трипсин, в свою очередь, может активировать другие предшественники ферментов ацинар­ных клеток [12, 18]. Из пораженных клеток выделяются гистамин и серо-тонин, резко усугубляющие патологический процесс. Под влиянием инги-бирующих факторов аутолитические процессы могут купироваться, а пато­логический процесс завершается отечной формой панкреатита. В худшем случае под воздействием фосфолипазы, эластазы и трипсина начинается протеолитический некробиоз панкреоцитов. Из патологического очага в кровь и лимфу поступает значительное количество токсигенных полипеп­тидов, липидов, панкреатических ферментов, биогенных аминов и других продуктов ферментативной аутоагресии, которые вызывают токсемию [16].

3.1.3. Дуоденопанкреатический рефлюкс

Полагают, что начальным этапом развития панкреатита является наруше­ние взаимоотношений между панкреатической секрецией, давлением в ГПП и двенадцатиперстной кишке. Повышение давления в просвете две­надцатиперстной кишки приводит к рефлюксу ее содержимого в ГПП с последующей активацией в нем протеаз, что может послужить толчком к развитию ОП и ХП [194]. В эксперименте на животных ОП вызывали пу­тем образования петли Пфеффера из двенадцатиперстной кишки, внутри-просветное давление в которой при этом превышало давление в ГПП, вследствие чего возникал рефлюкс дуоденального содержимого в проток. Было установлено, что в физиологических условиях у собак во время III фазы межпищеварительного комплекса и после кормления давление в две­надцатиперстной кишке может превышать давление в протоке поджелу­дочной железы. В это время небольшое количество (менее 1 %) дуоденаль­ного содержимого забрасывается в панкреатический проток [10].

Таким образом, хотя потенциальная возможность возникновения ОП в физиологических условиях существует, рефлюкс очень непродолжителен, незначителен по объему, и неизвестно, происходит ли при этом внутри-протоковая активация протеаз. Кроме того, на протяжении большей части


Глава 3. Универсальные патогенетические механизмы развития ХП • 123

времени сфинктер панкреатического протока эффективно предотвращает рефлюкс дуоденального содержимого в проток. Однако, если давление в двенадцатиперстной кишке значительно превышает давление в ГПП (рво­та) или отмечается на протяжении длительного времени (большое количе­ство пищи, дуоденостаз, динамическая кишечная непроходимость и т. д.), возникновение рефлюкса и активация протеаз более вероятны, особенно в случае совпадения во времени повышения секреции панкреатических фер­ментов с рефлюксом. В подобной ситуации одновременное нарушение взаимоотношений между давлением в двенадцатиперстной кишке, давле­нием в ГПП и секреторной активностью ПЖ может являться фактором, предрасполагающим к ОП и ХП [10].

Нельзя не привести результаты исследований S. Navarro и соавт., пред­ставленные на Европейской гастроэнтерологической неделе в Мадриде, в которых измерялось внутрибрюшное давление у больных ОП. Было опре­делено, что при увеличении внутрибрюшного давления на 1 мм рт. ст. риск развития тяжелого ОП возрастает в 2,23 раза. Была выявлена корре­ляционная связь между значением внутрибрюшного давления и тяжестью панкреатита, развитием бактериальных осложнений и летальных исходов. Достоверно более высокие цифры внутрибрюшного давления отмечены у больных, достоверно чаще нуждающихся в применении парентерального питания, антибактериальной терапии и хирургических вмешательствах [180].

3.1.4. Литостатиновая теория патогенеза хронического панкреатита

Открытие белка панкреатических камней — литостатина, обнаруженного в панкреатическом соке и конкрементах ПЖ на рубеже 90-х годов прошлого века, привлекло внимание многих научных групп, занимающимися про­блемами панкреатологии, в особенности проблемами обструктивных (на фоне панкреатолитиаза) и кальцифицирующих панкреатитов. Этот интерес был обусловлен выдвинутой гипотезой, основой которой стало предполо­жение о способности литостатина ингибировать образование нераствори­мых солей кальция в перенасыщенной кальцием среде [212, 251].

Одним из основных фактов, положенных в основу гипотезы, явилось обнаружение сниженных концентраций литостатина в панкреатическом соке у больных алкогольным ХП и у некоторых пациентов с неалкоголь­ным ХП [179]. С учетом того, что панкреатическая жидкость содержит значительные количества кальция в сочетании с высоким уровнем бикар­бонатов, а для ХП вообще характерна гиперсекреция кальция, вполне ло­гичным выглядело предположение, что дефицит литостатина может играть важную роль в развитии конкрементов и кальцификации ПЖ [212]. По­скольку литостатин рассматривался как один из возможных стабилизато­ров кальция в растворе, основная гипотетическая роль литостатина in vivo связывалась с ингибированием нуклеации, агрегации и образования кри­сталлов солей кальция в протоках ПЖ.

Вместе с тем, радиоиммунологический анализ с моноклональными ан­тителами не позволил выявить существенной разницы в содержании лито­статина в панкреатическом соке при с хроническом кальцифицирующем панкреатите по сравнению с контролем. Таким образом, было предполо­жено, что концентрация литостатина в панкреатическом соке не имеет су­щественного значения для формирования преципитатов. Более важным является уменьшение возможностей его синтеза, т. е. общего пула литоста-


124 • ХРОНИЧЕСКИЙ ПАНКРЕАТИТ

тина в ПЖ б определенное время [217]. С патохимических позиций пато­генез преципитации протеиново-кальциевых агрегатов рассматривался как результат снижения секреции литостатина в условиях повышенной потреб­ности. Такие состояния возникают при усилении гидролиза белков в пан­креатическом соке, индукции полимеризации белковых компонентов, по­явлении большого количества плохо растворимых белков, увеличении сек­реции кальциевых солей [29].

Следует отметить, что подобные литостатину белки обнаружены также в слюне и моче, т. е. это не уникальная способность панкреатического сока, а скорее общебиологическая закономерность [29].

В целом, литостатиновая теория может рассматриваться в качестве мо­дификации рассмотренной выше теории малых протоков Н. Sarles {теория интрадуктального литиаза) [203], однако быстрая эволюция научных пред­ставлений в данной области, а также большое количество достаточно спор­ных и противоречивых исследований, недостаточная определенность и са­мого биологического значения литостатина позволили нам выделить эту теорию отдельно. На наш взгляд, анализ литературы, посвященной моле­кулярной биологии, функции и механизму действия литостатина, позволит читателю более объективно оценить реальное состояние проблемы и обос­нованность данной теории в настоящий момент.

3.1.4.1. Молекулярная биология литостатина

Человеческий панкреатический литостатин кодируется Reg-геном (regener­ating gene) [228], расположенным на коротком плече 2-й хромосомы в 2р12 [117] и состоящим из шести экзонов [242]. Литостатин — растворимый гликопротеин, состоящий из 144 аминокислот с тремя дисульфидными мостиками, существующий в 11 изоформах (молекулярная масса 17-22 кДа) и составляющий от 5 до 10 % всех секретируемых ПЖ белков [89]. Литостатин S2-5 соответствует четырем изоформам, предотвращающим рост кристаллов кальция в растворе [62]. Негликозилированный литоста­тин S1 также выявляется в панкреатическом соке, собранном при отсутст­вии ингибиторов протеаз. Литостатин S1 был независимо обнаружен J. Gross и соавт. в человеческом [126] и бычьем [125] панкреатическом секре­те и назван панкреатическим нитеобразующим (фибриллярным) белком из-за его способности формировать фибриллы при нейтральных значениях РН.

Литостатин состоит из двух невзаимодействующих доменов: глобуляр­ного С-терминального (аминокислотные остатки 14—144) и подвижного N-терминального (остатки 1 — 13). С-терминальный домен содержит две главных а-спирали, шесть р-цепей, расположенных в двух антипараллель­ных р-слоях, и много петель. Отдельно от N-терминала в области С14-С25 расположен дисульфидный мост (рис. 3.1) [116].

Исторически литостатин С был первым выделен как главный белковый компонент панкреатического конкремента у больных алкогольным каль-цифицирующим ХП и, следовательно, был назван белком панкреатических камней (PSP-белок) [88]. Он имеет ту же полипептидную цепь, что и лито­статин SI. In vitro при гидролизе трипсином литостатина S2-5 получены литостатины HI (133 аминокислотный полипептид) и Н2 (N-терминаль-ный 1—11 аминокислотный андекапептид) [87].

В целом, литостатин С, S1, и HI —различные названия, представлен­ные в литературе и характеризующие один и тот же полипептид. Следует


Глава 3. Универсальные патогенетические механизмы развития ХП • 125

отметить, что Reg-бе­лок — это еще одно название, предложен­ное для литостатина и характеризующее его в качестве продукта Reg-гена. Этот ген был впервые обнару­жен в регенерирую­щей печени и регене­рирующих островках ПЖ, не эквивалент­ных нормальным тка­ням [233]. Функция Reg-белка полностью не выяснена; считает­ся, что он может сти­мулировать регенера­цию и/или рост пан­креатических (3-кле-ток [60].

Исторические об­стоятельства открытия белков в панкреатиче­ских конкрементах повлияли на исследо­вание их свойств. Бо­лее ранние работы были посвящены ал­когольному кальци-фицирующему ХП. Н. Sarles и соавт. [213] предположили, что литостатин способен

в этом случае предотвращать внутрипанкреатическое камнеобразование, блокируя кристаллизацию кальция и «рост» конкрементов в протоках ПЖ.

Однако эта точка зрения со временем была оспорена, и специфика функциональной роли литостатина в предотвращении камнеобразования теперь подвергается сомнению [67, 90]. Существуют данные, что литоста­тин может даже способствовать выделению мелких кристаллов, легко вы­мываемых потоком панкреатического сока [114]. В дальнейшем были про­анализированы различные аспекты этих противоречий: гипотетические функции литостатина (предотвращение осаждения карбоната кальция и ингибирование нуклеации и роста конкрементов в растворе) и возможное патогенетическое значение белка в развитии ХП.

3.1.4.2. Функции литостатина

Ингибирование образования кальциевых камней.J. P. Bernard и соавт. [62] предположили, что ингибирующая функция литостатина реализуется N-терминальным андекапептидом. Однако концентрация, в которой про­являет свою активность N-терминальный пептид или его синтетический


126 • ХРОНИЧЕСКИЙ ПАНКРЕАТИТ

аналог, до сих пор не выяснена. J. P. Bernard и соавт. [62] наблюдали ин-гибирующий эффект различных концентраций как естественных, так и синтетических пептидов (1,2—5,9 и 3,0—9,0 мкмоль/л соответственно), ин-гибирующему действию литостатина S2-5 проявляет такую же активность (0,6—5,9 мкмоль/л). В то же время D. Bimmler и соавт. [67] наблюдали от­сутствие какого-либо эффекта синтетического пептида даже при концен­трации 243 мкмоль/л (тест на нуклеацию) или 81 мкмоль/л (тест на кри­сталлический рост). В другом исследовании [90] синтетический пептид был активен только при концентрации более 80 мкмоль/л. По данным S. Geider и соавт. [114], концентрация пептида должна была достигать 500 мкмоль/л, чтобы вызвать предотвращение кристаллообразования.

Противоречивость полученных данных вызвала оживленную дискуссию исследователей. D. Bimmler и соавт. [67] заявили, что различие между собственными данными и результатами J. P. Bernard и соавт. [62] может быть связано с дефектами дизайна исследования. Согласно мнению S. Gei­der и соавт. [114], размер андекапептида намного меньше, чем литостатина S2-5. Следовательно, для достижения активной концентрации и реализа­ции его ингибирующего эффекта требуется большее количество молекул андекапептида (приблизительно в 100 раз больше), чем литостатина S2-5.

Было высказано мнение, что известный ингибирующий эффект лито­статина был фактически реализован из-за присутствия высокой концен­трации буфера Триса [90]. Действительно, в исследованиях М. de Reggi и соавт. буфер Триса при концентрации 1 ммоль/л полностью ингибировал формирование кристаллов из ионов Са2+. Поэтому ингибирование кри­сталлообразования кальция литостатином могло быть «побочным эффек­том» типовой подготовки эксперимента. В дальнейшем было подтвержде­но, что низкие концентрации буфера Триса действительно ингибируют нуклеацию кальция и кристаллический рост, в соответствии с ингибирую-щими кривыми, первоначально приписанными литостатину [190].

По данным D. Bimmler и соавт. [67], рекомбинантный литостатин кры­сы обладал ингибирующей активностью в отношении осаждения кристал­лов кальция. Однако при тех же самых условиях бычий трипсиноген и че­ловеческий сывороточный альбумин также вызывал ингибирование выпа­дения кристаллов кальция, сопоставимое с таковым у литостатина. Кроме того, было показано, что NaCl, фосфаты и, в некоторой степени, трипси­ноген и химотрипсиноген ингибируют рост кристаллов кальция [90]. L. Addadi и S. Weiner [54] также сообщили о существовании неспецифиче­ской функции ингибирования выпадения кристаллов кальция различными белками при концентрациях выше 0,5 мг/мл, как это было показано для литостатина.

Еще более интересным является эффект, выявленный S. Geider и соавт. [114], когда литостатин S2-5, напротив, потенцировал нуклеацию кристал­лов кальция. По данным авторов, литостатин способствовал образованию множества микрокристаллов, не имеющих патологического значения, ко­торые легко вымываилсь из протоковой системы ПЖ током панкреатиче­ского секрета.

Таким образом, биологические функции, первоначально приписанные литостатину, в настоящее время весьма дискутабельны.

В настоящее время существует несколько гипотез механизмов действия литостатина.

Гипотеза I. Литостатин связывает кальций.В экспериментах, выполнен­ных с помощью литостатина, меченного радиоактивным 45Са, было опре­делено, что литостатин С имеет четыре эквивалентных и независимых


 


Глава 3. Универсальные патогенетические механизмы развития ХП • 127

кальцийсвязывающих участка. J. Lohse и R. Kraemer предположили, что связывание литостатина с кальцием, вероятно, изменяет физико-химиче­ские характеристики этого белка, ведя к формированию белковых пробок, предшествующих кальцификации, и объясняет присутствие протеинов во всех слоях панкреатических камней [162].

В то же время отсутствие кальция в центре некоторых панкреатических камней, отмеченное в исследованиях L. Multigner и соавт. [178] и С. S. Pitchumoni и соавт. [196], противоречит мнению о предположительном участии кальция в инициации камнеобразования. A. Mariani и соавт. [166] также определили, что полипептидные ядра рентгеннегативных камней не имеют в своей основе кальциевого ядра. Кроме того, L. Multigner и соавт. [177] указали, что препятствие выпадению кристаллов кальция литостати-ном С нельзя было бы объяснять исключительно фиксацией кальция к белку. Действительно, при концентрации литостатина С, которая полно­стью ингибирует кальцификацию, более 98 % ионов кальция остаются свободными [172, 177].

Возобновление интереса к механизму фиксации кальция к литостатину было обусловлено открытием у животных лектинов (фитогемагглютини-нов), гомологичных литостатину С (лектины — белки, функционирование которых зависит от кальция) [191, 192], а также описанием способности литостатинов HI и S2-5 потенцировать образование кальций-бактериаль­ных комплексов [144].

Помимо литостатина, к настоящему моменту известно девять белков се­мейства лектинов С-типа. Семь из этих белков имеют кальций-зависимую активность: в том числе эпидермальный фактор роста человека [122], чело­веческий тетранектин [148], человеческий сурфактант легких [129].

В заключение следует отметить, что анализ структуры литостатина не позволяет нам идентифицировать кальций-связывающие участки, которые можно считать ингибирующими осаждение кальция и кристаллический рост конкремента.

Гипотеза II. Адсорбция литостатина на кристаллах карбоната кальция (адсорбционная гипотеза).Теоретическая возможность адсорбции литоста­тина на кристаллах карбоната кальция была предложена в качестве меха­низма ингибирования камнеобразования. L. Multigner и соавт. [177] описа­ли механизм камнеобразования, при котором данный белок мог иметь большее сродство к кристаллу, чем к свободным ионам кальция. Точно так же А. Саго и соавт. [88] на основе проведенных исследований заключили, что сродство литостатина выражено больше к кристаллам, чем к свобод­ным ионам кальция. В дальнейшем была продемонстрирована возмож­ность адсорбции литостатина S2-5 на поверхности предсформированного кристалла [62].

Н. Sarles и соавт. подтвердили возможность адсорбции N-терминально­го андекапептида к кристаллической поверхности. По мнению авторов, снижение уровня N-терминального андекапептида в панкреатическом соке пациентов в результате его разрушения и преципитации является одной из причин развития кальцифицирующего ХП [213].

Теоретические предпосылки возможности адсорбции литостатина и N-терминального пептида к кристаллм СаСО3 вскоре стали предметом мно­гих исследований.

Так, S. Geider и соавт., используя иммунофлюоресцентные методы [114], определили, что литостатин действительно адсорбируется на гранях кристалла относительно оси роста. Однако важно подчеркнуть, что эти эксперименты были выполнены в условиях индуцированного кристалличе-


128 • ХРОНИЧЕСКИЙ ПАНКРЕАТИТ

ского роста. Поэтому результаты данного исследования не доказывают, что адсорбция литостатина на кристаллах — это механизм ингибирования кри­сталлического роста in vivo, а только показывают возможность модифика­ции кристаллической формы в присутствии этого белка.

Кроме того, было определено, что сродство литостатина к кристаллам карбоната кальция является даже более низким, чем у альбумина, а коли­чество адсорбируемого литостатина и альбумина на единицу поверхности находятся примерно в одинаковом диапазоне [90]. Наконец, было доказа­но, что адсорбция литостатина на кристаллах карбоната кальция не намно­го выше, чем аморфного вещества, например стекла [190]. Эти наблюде­ния свидетельствуют не в пользу гипотезы адсорбции литостатина на кри­сталлах карбоната кальция как механизма элиминации кристаллов из про-токовой системы ПЖ.

V. Gerbaud и соавт. [116] для изучения взаимодействия между кристал­лами карбоната кальция и N-терминальным пептидом использовали моле­кулярное динамическое моделирование. Эти исследования показывают, что литостатин способен пространственно ориентироваться с кристаллами карбоната кальция и затем адсорбировать их. При этом, в дополнение к взаимодействию кристаллов с N-терминальным пептидом, биполярное распределение заряженных остатков в структуре С-концевого домена [64] может первоначально также играть роль в ориентации белка относительно кристаллической поверхности. Изучение кристаллографической структуры литостатина показало, что в С-терминальном домене кислые аминокислот­ные остатки расположены с одной и той же стороны молекулы, в двух от­резках, отделенных приблизительно на 6 А. Эта периодичность, аналогич­ная таковой для ионов кальция на нескольких кристаллические плоско­стях, может позволять электростатически взаимодействовать между С-кон-цевым доменом и кристаллом.

Эта модель могла объяснять адсорбцию литостатина на кристалле каль­ция, но не доказывала функцию ингибирования кристаллизации или спе­цифику адсорбции литостатина на кристалле [190].

В целом, ни одно из вышеупомянутых исследований не было способно четко прояснить функцию или механизм действия литостатина.

Для объективизации приведенной выше информации необходимо упо­мянуть и другие белки с известным или предполагаемым участием в про­цессе кристаллизации.

Бакуловирусный экспрессируемый рекомбинантный литостатин крысытакже обладает ингибируюшей активностью в отношении осаждения, кри­сталлизации и роста кристаллов карбоната кальция. Было показано, что, в отличие от человеческого литостатина, только С-терминальный полипеп­тид демонстрировал ингибирующий эффект в отношении нуклеации кри­сталлов кальция и кристаллического роста. Однако отмеченный эффект был менее выраженным, чем у молекулы литостатина человека. Ни N-тер-минальный андекапептид, ни его синтетический гомолог не имели подоб­ного эффекта даже при более высоких концентрациях. Следует отметить, что другие белки, например бычий трипсиноген, человеческий сывороточ­ный альбумин имели сопоставимый ингибиторный эффект. В силу этого специфика и физиологическое значение ингибирующей способности лито­статина крысы в настоящее время подвергается сомнению [65, 66].

Антифриз-эффекторные белки.Многие из морских рыб, обитающих в полярных океанах и северных морях, защищены от низких температур и даже замораживания в ледяной морской воде так называемыми антифриз-белками сыворотки крови, являющимися гликопротеинами. К настоящему


Глава 3. Универсальные патогенетические механизмы развития ХП • 129

времени идентифицировано четыре различных типа антифриз-белков. Предположительно эти макромолекулы связываются с поверхностью кри­сталлов льда, предотвращая их рост. Этот тип белков характеризуется вы­сокой идентичностью аминокислотной последовательности (от 25 до 29 %) по отношению к человеческим литостатинам и гомологичны С-типу лек-тинов [100]. Исследования К. V. Ewart и соавт. показали, что связываю­щий лед участок антифриз-белков сельди соответствует кальций-связы-вающему участку лектинов С-типа [106].

Белки, потенциально управляющие минеральным ростом.Недавно был изолирован и выделен овоклеидин — основной белок кальфицированного слоя яичной скорлупы [165], обладающий 30 % идентичной последователь­ностью с человеческим литостатином и состоящий из отдельного лектино-подбного домена С-типа. Функция овоклеидина пока еще не установлена, предположительно, он играет роль в формировании матрицы яичной скор­лупы.

Перлюцин — белок, выделенный из раковины моллюска Haliotis laeviga-ta [243]; по своей аминокислотной последовательности он также принадле­жит к группе лектинов, состоящих из единственного домена С-типа. Каль-ций-связывающий участок 2 полностью гомологичен таковому у литоста-тина, в то время как кальций-связывающие участки 1 и 3 имеют только несколько общих аминокислотных остатков. Перлюцин промотирует осаж­дение СаСО3, в раковине моллюска, хотя авторы подчеркивают, что это может быть только одним из множества аспектов его функционирования.

Человеческий тетранектин (который содержит кальций-связывающие участки 1 и 2) также принадлежит к семейству лектинов С-типа, осуществ­ляя роль белковой матрицы кости при минерализации [246]. Недавно было высказано мнение, что он играет ключевую роль в росте этих и ремодели-ровании костной и мышечной тканях [142].

Панкреатит-ассоциированный белоксинтезируется и секретируется в ПЖ, по своей аминокислотной последовательности весьма близок лито-статину (идентичность —43 %, подобие — 54 %). Панкреатит-ассоцииро­ванный белок соответствует основным характеристикам лектинов. Функ­ция панкреатит-ассоциированного белка остается неизвестной, хотя сооб­щается, что секреция литостатина и панкреатит-ассоциированного белка увеличиваются в ответ на повреждение pancreas [190].

В семействе лектинов С-типа только эти два белка (и их гомологи) рас­щепляются трипсином на участке между аргинином и изолейцином с об­разованием по существу нерастворимых нитеобразных структур (фибрилл). Это, вероятно, и составляет наиболее важную их общебиологическую осо­бенность.

Недавно было предположено, что именно эти плотные экстрацеллюляр-ные фибриллярные комплексы, сформированные в условиях секреторного напряжения ПЖ, обеспечивают защиту внутриполостного матрикса и осу­ществление полноценной регенерации протоковых структур [60п].

Существуют данные, что на ранних стадиях болезни Альцгеймера отме­чается повышенная секреция как литостатина, так и панкреатит-ассоции­рованного белка, что также подтверждает предположение о тесной функ­циональной взаимосвязи этих двух полипептидов [121].

Недавно появилась альтернативная гипотеза камнеобразования, утверж­дающая, что механизм взаимодействия литостатина с кальцием не имеет принципиального значения, хотя этот белок и играет существенную роль в образовании внутрипротоковых преципитатов [147]. Гипотеза основана на результатах приведенных ниже исследований. Во-первых, стало известно,


130 • ХРОНИЧЕСКИЙ ПАНКРЕАТИТ







Последнее изменение этой страницы: 2016-04-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.65.91 (0.018 с.)