Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Методы исследования реологических и суспензионных свойств кровиСодержание книги
Поиск на нашем сайте
Возможности инструментальной гемореологии определяют полноту описания реологических свойств крови и существенно влияют на адекватность реологического анализа. Исследование реологических свойств крови не может ограничиваться определением вязкости. Более того, при оценке параметров реологических кривых крови вязкость в классическом смысле не определяется. Это дает основания считать более правильным термин «реометрия», т.е. определение текучих, пластических и других реологических свойств крови. Тем не менее термин «вискозиметрия» бытует в литературе наряду с понятием «реометрия», а в гемореологии встречается даже чаще. Реометрия крови Реометрия крови является самостоятельным разделом гемореологии и включает в себя по меньшей мере 3 основных момента: • избрание реологической модели в соответствии с задачами исследования и представле • выбор прибора для исследования; • определение критериев оценки реологических свойств крови и их расчет. Рассмотрим Важнейшим является вопрос о выборе модели. Для этого целесообразно руководствоваться по меньшей мере двумя основными соображениями: модель должна соответствовать имеющимся представлениям о внутренней структуре крови и тех изменениях, которые в ней происходят под действием сдвигающего напряжения; далее — целесообразно отдавать предпочтение уравнениям более простым и содержащим по возможности меньшее число параметров [Смольский Б.М. и др., 1970]. Такие требования предъявляются к модели в том случае, если преследуется цель одним уравнением описать поведение крови в возможно более широком диапазоне скоростей деформации. Наряду с этим существует способ раздельного изучения элементов кривой течения путем проведения реометрии в относительно узком диапазоне градиентов скорости; в пределах этого диапазона используются сравнительно простые реологические уравнения (линейный закон, степенной закон), а значения реологических параметров на участках скоростей деформации, не охваченных при реометрии, находят графической экстраполяцией либо не подвергают анализу вовсе. Возможность использования такого упрощенного подхода определяется конкретными задачами исследования. Необходимость в использовании какого-либо обобщающего реологического уравнения в данном случае отпадает. Обосновывая возможность такого «фрагментарного» реологического анализа, следует подчеркнуть, что при строгом рассмотрении используемых реологических моделей крови становится очевидным: они всегда характеризуют лишь участки кривой течения, никогда не охватывая ее во всем диапазоне скоростей деформации. Теоретические основы реометрии разработаны достаточно полно. Существенный вклад в этот раздел реологии внесли отечественные исследователи М.П. Воларович, Г.В. Виноградов, П.А. Ребиндер, Г.И. Фукс и др. Предложено значительное количество различных конструкций реометров. Все существующие реометры принято условно делить на 2 группы: с однородным полем напряжений и деформаций и с относительно неоднородным полем напряжений и деформаций. ДР APR : 21 ■*-Q IgP
Y il T ДП Рис. 10.14. Порядок графического перестроения зависимости «расход—давление», полученной с помощью капиллярного реометра. К первой группе относятся ротационные приборы с различной геометрией рабочих частей (цилиндрические, дисковые, конус—плоскость, биконические и т.д.). Ко второй группе относятся капиллярные реометры — приборы, основанные на измерении скорости падения шарика (метод Стокса) и тел другой формы в исследуемом образце, а также реометры, принцип действия которых основан на регистрации механических, электрических, акустических колебаний в исследуемом образце. В настоящее время наибольшее распространение получили два типа реометров — капиллярные и ротационные. Сущность капиллярного метода состоит в прокачивании через капилляр с известными параметрами исследуемого образца крови или плазмы. При этом в соответствии с фиксированными изменениями перепадов давления на концах капилляра измеряется расход исследуемого образца крови. На основании полученных данных строится зависимость «давление—расход». После соответствующих преобразований (рис. 10.14) переходят к классическим кривым течения или вязкости. Таким образом, при капиллярной реомет-рии до эксперимента ориентировочно известен лишь диапазон скоростей деформации, а конкретные градиенты скорости являются вычисляемыми величинами. В ротационных приборах, напротив, скорость деформации есть величина, заранее известная. Более того, ее можно изменить в ходе исследования. В этом заключается одно из принципиальных различий между обсуждаемыми типами реометров. Рассмотрим основные принципы работы, преимущества и недостатки ротационных и капиллярных реометров. Капиллярные реометры — весьма сложные устройства, позволяющие исследовать реологические свойства в довольно широком диапазоне скоростей деформации. В первом разделе главы было показано, что при течении жидкости по капилляру в соответствии с законом Пуазейля г) = ДР 81Q ■ При фиксированных размерах капилляра R и 1 по значениям параметров АР и Q можно определить вязкость исследуемого образца крови. При этом используется так называемый квазиньютоновский подход, при котором кровь рассматривается как ньютоновская жидкость и характеризуется эквивалентной вязкостью, под которой подразумевается вязкость некоторой ньютоновской жидкости, которая под действием того же перепада давления в измерительном капилляре имеет такой же расход, как и исследуемый образец крови. Изменяя перепад давления АР и определяя расход Q, получаем зависимость АР ~ f(Q). В случае ньютоновской жидкости расходная характеристика представляет собой прямую линию с тангенсом угла наклона: tga. = Q К4-я АР 8 • 1 - л" Из этого соотношения следует весьма примечательный факт: наклон прямой зависит от параметров 1 и Q, т.е. от размеров капилляра и, следовательно, не характеризует свойство исследуемой жидкости. М. Reiner (1963) предложил строить кривую течения в следующих координатах: Р = APR 21 ' которые он назвал консистентными переменными. В этом случае тангенс угла наклона кривой уже не зависит от параметров 1 и R: Графики в координатах консистентных переменных не зависят от размеров капилляра и, таким образом, отражают определенное свойство исследуемого образца крови. Использование консистентных переменных для крови в диапазоне градиентов скорости, где она ведет себя как псевдопластичная среда, может быть совмещено с аппроксимацией кривой: течения степенным уравнением, которое принимает вид: APR _ ( 4Q ' ' 21 ~К(л-1 При применении двойной логарифмической бумаги графическим изображением соотношения будет прямая линия. Тангенс угла наклона этой линии равен п, а отрезок отсекаемой прямой на оси lg(APR)/21 равен к. При этом угол наклона прямой а для крови составит меньше 45° вследствие ее псевдопластичности. Для ньютоновской жидкости угол наклона будет равен 45°, а различие графиков будет состоять лишь в величине отсекаемого отрезка lg k (рис. 10.15). При использовании капиллярных реометров возможны следующие допущения: поток крови в капилляре считается ламинарным, при этом перепад давления остается постоянным на всем протяжении капилляра. Принято также допускать, что кровь является несжимаемой жидкостью, а ее температура в течение всего измерения остается неизменной. Для течения в капилляре можно легко получить следующее соотношение для сдвигающего напряжения: _ APR где тст — сдвигающие напряжения на стенке капилляра. 512
Рис. 10.15. Кривая течения крови, построенная в логарифмических координатах с использованием консистентных переменных. I При построении кривой течения каждому значению касательных напряжений противопоставляется определенная величина скорости деформации. При попытке вычислить истинный градиент скорости, определяемый только касательными напряжениями, возникают трудности, связанные с весьма сложными математическими вычислениями. Принято считать, что капиллярные реометры не обеспечивают возможности измерения вязкости в достаточно широком диапазоне градиентов скорости, тогда как, используя ротационные вискозиметры, можно создать сколь угодно малые скорости деформации. В действительности же в капиллярных приборах скорости сдвига меняются в пределах от 1СГ1—10~2 до 10~2—10~7 с"1 и, таким образом, соответствуют практически всей области неньютоновского поведения крови [Astatira G., Marrucci G., 1978]. Более того, существует точка зрения, согласно которой перенос данных реометрии на конкретные объекты должен производиться с соблюдением принципа геометрического подобия [Смольский В.М. и др., 1970]. Это дает основания полагать, что при проведении реологических экспериментов с кровью целесообразно по только стремиться к получению возможно более широкого спектра градиентов скорости, но и руководствоваться также соображениями экстраполяции данных. Основными достоинствами капиллярных реометров являются простота, надежность, невысокая стоимость. В то же время при измерении расхода крови через капилляр в зависимости от перепада давления на его концах на результатах измерения сказывается множество факторов, пренебрежение которыми может привести к значительным искажениям результатов. Эти факторы принято называть ошибками (поправками) капиллярной реометрии. Рассмотрим основные из них [Фукс Г.И., 1956; Bird R. et al., 1977]. 1. Ошибка, связанная с затратами части энергии, создаваемой устройством, смещаю 2. Ошибка из-за возникновения эффективного скольжения крови по стенке капилляра, 3. Ошибка, обусловленная непостоянством градиента давления вдоль капилляра и на 4. Ошибка неизотермичности, вызванная частичным превращением энергии давления в
33-5812 let Igy Рис. 10.16. Влияние ошибок капиллярной реометрии на конфигурацию кривой течения. Отклонения кривой течения, вызываемые ошибками, увеличивающими фактические значения вязкости: 1 — турбулентностью; 2 — адсорбцией; 3 — потерей давления; 4 — упругостью; 5 — «концевыми эффектами»; 6 — кинетической энергией и ошибками, уменьшающими фактические значения вязкости; 7 — пристеночным эффектом; 8 — неизотермичностью. ньютоновские свойства. Она максимальна при больших скоростях деформации и может быть обусловлена также колебаниями внешней температуры. Применение различных термостаби-лизирующих устройств позволяет свести погрешность, обусловленную данной ошибкой, к минимуму или исключить вовсе. 5. Ошибка, связанная с входовыми эффектами, обусловлена тем, что для перехода крови 6. Ошибка, обусловленная явлением поверхностной абсорбции. Результат его возникно 7. Ошибка из-за возникновения турбулентности в потоке крови. Критическим числом Кроме перечисленных поправок, необходимо учитывать погрешность, связанную с временными эффектами (для крови характерна тиктотропность), эффектами Вейссенберга, поверхностного натяжения и дренажа. Влияние различных ошибок на ход кривой течения иллюстрируется графиками (рис. 10.16). Такое большое количество поправок в данном случае свидетельствует не о порочности метода капиллярной реометрии, а, напротив, о достаточно полном теоретическом его обосновании. Существует несколько способов выявления соответствующих поправок, а именно: 1) тарирование вискозиметра ньютоновскими жидкостями с известной вязкостью; 2) использование капилляров с различной геометрией, подбираемых экспериментальным способом: 3) расчетный способ. Вместе с тем самым практичным является создание такого вискозиметра, в котором все указанные ошибки будут сведены к минимуму посредством оптимального конструктивного решения. В работе Г.И. Фукса (1956) приведены следующие основные конструктивные требования к капиллярным реометрам. • Для предупреждения турбулентности должно выполняться условие: R3 I s 2RCK PH,- • р-ДР'
где р — плотность; Re — число Рейнольдса; ДР — перепад давления на концах капилляра; V — линейная скорость потока. Постоянство диаметра рабочей части капилляра выверяется при помощи измерительного микроскопа.
Рис. 10.17. Функциональная схема электронного капиллярного реометра. 1 — измерительный капилляр; 2 — манометрическая трубка; 3 — электронный счетчик времени с индикатором; 4 — датчик начала измерительного участка; 5 — датчик конца измерительного участка; 6, 7 — источники света; 8, 9 — диафрагмы; 10, 11 — микрообъективы; 12, 13 — фоторезисторы; 14 — нагревательный элемент; 15 — датчики температуры; 16 — блок стабилизации температуры; 17 — блок питания. • Наряду с указанным соотношением длины и диаметра следует ограничиться диапазо • Переходы между рабочей и измерительной частью трубки должны быть плавными. В основу измерения реологических параметров крови капиллярным реометром положена методика, разработанная Б.М. Смольским и соавт. (1970). В приборе используют сменные стеклянные капилляры, в средней части каждого из которых имеется узкий участок с диаметром, например, 102, 493 и 690 мкм. Рабочей частью капилляра служит узкая зона, широкая часть капилляра используется для измерения расхода крови. Исходя из того что объемный расход крови через участки капилляра с различным сечением одинаков, определение расхода крови через рабочую часть капилляра фактически сводится к определению расхода через измерительный участок. По определяемому расходу рассчитывается эквивалентный градиент скорости в рабочем участке капилляра по формуле: , -JSL Л Граб где г 6 — радиус рабочего участка капилляра. Определение объемного расхода крови через измерительный участок капилляра практически сводится к регистрации скорости истечения крови из него. Один из вариантов принципиальной электронно-оптической схемы капиллярного реометра представлен на рис. 10.17. Необходимая точность измерения в приборе может обеспечиваться электронным счетчиком времени. Запуск и остановка электронного счетчика осуществляются автоматически сигналами фотоэлектронных датчиков, установленных в начале и конце измерительного участка капилляра. Источники света, диафрагмы и объективы формируют световые потоки внутри капилляра, а фоторезисторы преобразуют изменение светового потока при движении крови по капилляру в электрические сигналы. Результат измерения времени прохождения крови по измерительному участку отображается на табло индикатора счетчика времени. Началом отсчета является момент перекрытия светового потока в сечении измерительного участка капилляра столбом движущейся крови. Данные об изменении светового потока преобразуются фотосопротивлением в электрический сигнал, который усиливается микросхемами и формируется в логический «ноль» (0), поступающий на схему совпадения. Аналогично формируется логическая «единица» (1), соответствующая концу измерения. Все исследования проводят при постоянной температуре (37"С). 33*
Рис. 10.18. Три способа отыскания предела текучести (объяснение в тексте). Фактический диаметр капилляра определяется на измерительном микроскопе, а длина — фотографическим способом. Образцы крови перед измерением стабилизируются цитратом натрия в соотношении 1:9. Капилляр перед началом измерения промывают водой, а затем спиртом, раствором аммиака и эфиром. Для построения кривой течения крови при помощи измерительного гемостата создают различные перепады давления на концах капилляра в диапазоне от 10 до 300 мм вод. ст. и при каждом из них определяют объемный расход крови. Зная перепады давлений и соответствующие им величины объемного расхода, можно рассчитать значение эквивалентного градиента скорости и эквивалентной вязкости крови. Описанное устройство может быть использовано для определения пластичности крови путем измерения статического предельного напряжения сдвига, которое определяют по критической величине давления, необходимого для смещения столбика крови в капилляре: 0 = APR 21 ' где 0 — статическое предельное напряжение сдвига. Из классической реологии известно, что значения предельного статического напряжения сдвига, получаемые таким способом, инвариантны в широких пределах [Фукс Г.И., 1956]. Определение предела текучести, между тем, — один из наиболее сложных вопросов рео-метрии. Рис. 10.18 иллюстрирует возможность отыскания по меньшей мере трех значений данного реологического параметра для одной и той же кривой течения. Три классических способа определения предела текучести детально описаны R. Houwink еще в 1937 г., но единства взглядов на то, какой из них позволяет определить истинное значение этого параметра, пока нет. Предел текучести iaQ есть не что иное, как статическое предельное напряжение сдвига 0, т.е. минимальное напряжение, при достижении которого фактически начинается течение. Слово «фактически» в данном случае подразумевает наличие начала течения и ниже определенного значения tjj, но это течение не позволяет зарегистрировать разрешающая способность используемого реометра [Фукс Г.И., 1956]. По существу, статическое предельное напряжение сдвига численно равно отрезку оси напряжений, отсекаемому продолжением криволинейного участка кривой течения. Столь же часто используется на практике понятие динамического предела текучести хъй. Он определяется как отрезок, отсекаемый на оси напряжения продолжением прямолинейного участка кривой течения. Найденный таким образом предел текучести служит теоретическим пределом текучести жидкости типа Шведова—Бингама, графиком которой является прямолинейный отрезок кривой течения реальной среды и его продолжение до оси напряжений. Если учесть, что, согласно классическим представлениям, с превышением предела текучести структура среды полностью «разрушается» и начинается течение, то становится ясным, почему этот параметр применительно к Г—]
Рис. 10.19. Конфигурации рабочих частей капиллярного (а) и основных типов (б) ротационных реометров. крови с определенными поправками используется как показатель агрегации ее форменных элементов [Григорьянц Р. А. и др., 1978]. Реже, чем два предыдущих способа, используется определение текучести как напряжения сдвига, начиная с которого зависимость между скоростью деформации и напряжением сдвига становится линейной хс0. Это так называемый условный предел текучести. Разница между пределами текучести, определяемыми по трем рассмотренным методикам, весьма значительна и, по нашим данным, может достигать 30—40 %. Характерно, что по мере возрастания гематокритного числа значения пределов текучести, определенные разными способами, отличаются друг от друга в большей степени. Существенно, что статическое предельное напряжение сдвига определяется экспериментальным путем, а динамический и условный пределы текучести находятся путем графических построений. Наш многолетний опыт определения предела текучести различными способами показывает, что статическое предельное напряжение сдвига — показатель, наиболее пригодный для практического использования. Это обусловлено тем, что его величина определяется с наименьшей погрешностью измерения и физически он вполне оправдан. Наибольшей популярностью для определения вязкости в настоящее время пользуются ротационные реометры. С их помощью получено большинство данных о реологических свойствах крови. Основные отличия ротационных приборов: 1) в них устанавливается непосредственная связь между скоростью деформации и напряжением сдвига; 2) создается значительно более однородное, чем в капиллярных вискозиметрах, поле деформаций и напряжений; 3) возможность исследовать упругие деформации и временные эффекты. Любой ротационный реометр состоит из двух основных узлов — неподвижного (статора) и подвижного (ротора). В зазор между этими узлами помещают исследуемый образец крови. При вращении ротора со строго фиксированной скоростью крутящий момент передается через исследуемый образец статору, который в свою очередь связан с регистратором крутящего момента. Изменяя скорость вращения ротора (тем самым в отличие от капиллярного реометра задаются вполне определенные величины скорости деформации), фиксируют соответствующие изменения крутящих моментов. Ротационные вискозиметры отличаются друг от друга конфигурацией рабочих узлов (рис. 10.19). Основным отличием приборов с разной формой ротора и статора является различная степень однородности создаваемого поля напряжений. Так, например, в соосно-ци-линдрическом вискозиметре никогда не удастся достичь такого однородного сдвига, как в реометре типа «конус—плоскость». Это обусловлено конструктивными трудностями. Деление на ротор и статор весьма условно, так как существуют измерители крутящего момента, основанные на том, что при его возникновении момент вращения мгновенно компенсирует- ся электромагнитами с целью удержать «ротор» на месте, а регистрируется напряжение на обмотках удерживающих электромагнитов, пропорциональное моменту кручения. При этом как ротор, так и статор остаются неподвижными. В приборе типа «конус—плоскость» зазор между ротором и статором гораздо меньше, чем в соосно-цилиндрическом, что дает возможность пользоваться сравнительно небольшим количеством крови для исследования, облегчает соблюдение условия изотермичности исследуемого образца. Таким образом, оба типа вискозиметров (капиллярные и ротационные) могут быть условно классифицированы по двум основным признакам: по степени неоднородности создаваемого поля напряжения и по количеству конструктивных трудностей, которые приходится преодолевать при создании прибора. Проиллюстрируем основные реологические соотношения для ротационных реометров на примере соосно-цилиндрического с высотой стакана статора п, радиусами ротора и статора Rp и R<. соответственно. Статор испытывает крутящий момент: М = F К, где М — крутящий момент (н-м), a Rc — длина плеча, равная радиусу стакана статора. F = 2я R, Oi; М = 2я Rc2 xji\ tCT - М Скорость сдвига определяется из соотношения где ф — угловая скорость. Соотношение размеров ротора и статора определяется величиной При достаточно небольшом зазоре величина а очень мала. тогда после подстановки получаем: 2ср Из этого соотношения следует важный практический вывод: у можно регулировать, изменяя угловую скорость ф и зазор между соосными цилиндрами d = r<. — Rp. Исходя из соотношений, полученных для х„ и у, можно перейти в общем виде к выражению для вязкости: 4>/а где величины а и 2я R^ h — постоянные для данного прибора, ф — регулируемая величина, а М — регистрируемый параметр. Между тем ротационные реометры имеют определенные недостатки. Основной причиной погрешностей ротационной реометрии являются концевые эффекты вблизи торцов цилиндров, которые полностью устранить весьма трудно. Кроме того, необходимо учитывать тепловыделения, возникающие в исследуемом образце. Образующееся тепло не уноси~тся потоком крови, как это происходит в капиллярных приборах, и может внести существенную ошибку в результаты измерений. Представляется, что правильнее было бы не противопоставлять два описанных типа ре- нии комплексного реологического анализа [Смольский Б.М. и др., 1570]. Результаты реометрии крови не могут быть оценены одним значением вязкости, без учета ее зависимости от скорости деформации. Наиболее полная реологическая информация содержится в кривой течения или вязкости, поэтому анализу обычно подвергаются отдельные параметры этих кривых, чаще кривой вязкости. Наибольший интерес представляют зависимость вязкости от градиента скорости и степень отклонения крови от ньютоновского поведения, которая характеризуется степенью кривизны зависимости т| ~ f(y). На практике целесообразно использовать наиболее простые критерии оценки текучести свойств крови. Известно, что по результатам рутинной реометрии для крови, как и других нелинейно-вязкопластичных материалов (псевдопластичных), на кривой течения могут быть выделены три участка: области наименьшей и наибольшей асимптотической вязкости и область аномальной вязкости. М. Reiner (1963) предложил для оценки текучих свойств неньютоновских жидкостей два критерия, которые с успехом можно использовать в гемореологии: Лотн = Л max Л inin где Л,„ах и Лтт ~~ соответственно коэффициенты наибольшей и наименьшей асимптотической вязкости; л Лтах — Лтт АТ\ =, 7тах ~ 7i«iii где Утах и Уш1п ~ значения скорости деформации, при которых наблюдается т|1пах и r|min; Ах\ — градиент снижения вязкости. Применительно к крови для получения Дг| используют следующие соотношения: ., _ ЛЮ ~ Л ISO _ ЛЮ~ Л150 где л 10 и Л150 ~" вязкость крови при скоростях деформации 10 с 'и 150 с ■ соответственно; у150 и у10 — градиенты скорости 150 с"1 и 10 с"1; А „ Л1 ~ ^70 _ Л1 ~ Л70 69 ' 770 - 71 где г|, и т)70 — вязкость крови при скоростях деформации 1,0 с ' и 70 с ' соответственно; у,, у70 — значения градиентов скорости 1 с"1 и 70 с"1. Показатель Дг|" мы использовали нами при обработке данных, полученных с помощью ротационного соосно-цилиндрического вискозиметра. Другим способом характеристики нелинейного участка кривой вязкости или течения крови в целом является его параметрическое описание. Участок переменной вязкости, который удается выявить при реометрии крови, удовлетворительно аппроксимируется, например, степенной зависимостью. Это означает, что в координатах lgx ~ lgy или lgri ~ lgy участок переменной вязкости превращается в прямую линию. Реологическими параметрами при этом являются пик, причем параметр п является мерой нелинейности кривой течения. Учитывая, что реологические параметры крови в значительной мере зависят от величины гематокритного числа, заслуживает внимания рассмотрение так называемых стабилизированных или приведенных реологических характеристик. Целью введения этих характеристик является получение показателей вязкости, инвариантных по отношению к гематокрит-ному числу. В.А. Аграненко (1980), В.А. Аграненко и соавт. (1981) предлагают стабилизированный показатель предела текучести или, как они его называют, коэффициент агрегации: А = ■со (Н - 7)3 или А = (Н - 5)3 ' где А — коэффициент агрегации, н/м2; т0 — предел текучести. Аналогичный показатель использовали Р.А. Григорьянц и соавт. (1978). Эти же авторы для исключения влияния гемато-критного числа на вязкость крови используют показатель структурной вязкости: Р = In тц Н или р = Н где р — показатель структурной вязкости, Пас; т], — коэффициент вязкости при скорости деформации 1с"1. Систему «приведенных» показателей широко применяют в классической реологии. Общий алгоритм расчета приведенных показателей имеет следующий вид [Фукс Г.И., 1956; Цветков В.Н. и др., 1965] • Расчет относительной вязкости г\°: где Т1 — вязкость исследуемого образца при данной скорости деформации; ti0 — вязкость известной ньютоновской жидкости (обычно воды). Расчет удельной или специфической вязкости г|°: Расчет логарифмической вязкости г)?: где In tj° — натуральный логарифм относительной вязкости; С — процентная концентрация суспензии. Расчет приведенной или приведенной удельной вязкости г|°:
4-1 Смысл показателя заключается в том, что при отсутствии эффекта взаимодействия между частицами дисперсной фазы он является функцией величины этих частиц и не зависит от их концентрации. Расчет характеристической или истинной внутренней вязкости раствора, содержащего взаимодействующие частицы г\°5:
или = limTi4 = lim (^4 С-»0 С->0 Символ С -> 0 означает, что имеется в виду экстраполяция данного отношения на нулевую концентрацию. Такой показатель целесообразно рассчитывать в том случае, если имеет место взаимодействие между частицами. Расчет характеристической логарифмической вязкости т)°:
Эффективность расчета приведенных показателей при выполнении гемореологического анализа весьма высокая. Например, Э.К. Цибулькин и соавт. (1982) установили, что если в формулах использовать в качестве показателя концентрации вещества (С) величину гемато-крита, то параметр и0 1 r\s = lim pj. аналогичен характеристической вязкости и отражает главным образом гидродинамические свойства отдельных эритроцитов, в частности их геометрические пропорции. Из приведенных материалов становится очевидным стремление исследователей увязать интегральные гемореологические параметры — предел текучести и вязкость при различных скоростях деформации со свойствами эритроцитов. Это понятно, так как их роль в неньютоновском поведении крови наибольшая, а применительно к движению крови по сосудам, диа- метр которых соизмерим с размерами эритроцита, на первый план выступают именно механические свойства форменных элементов. По-видимому, нельзя дать строгих рекомендаций в отношении того, каким из обсуждаемых критериев нужно пользоваться. Предпочтение следует отдавать тем критериям, которые в большей степени соответствуют замыслу исследования. Что же касается клинической практики, то представляется целесообразным использовать наиболее доступные критерии, например расчет градиентов снижения вязкости. Подготовка проб для реометрии обычно включает добавление к ней цитрата натрия или гепарина. В настоящее время затруднительно отдать предпочтение тому или иному способу предотвращения свертывания. Анализ данных ротационной и капиллярной реометрии здоровых людей показал, что между этими способами нет существенных различий. Тем не менее целесообразно придерживаться одной методики стабилизации крови. В настоящее время важное значение имеет определение деформируемости эритроцитов («внутренней» вязкости). S. Charm и G. Kurland (1974) описывают несколько способов определения упругих деформаций в эритроцитах: 1) реометрию эритроцитной массы (Н = 0,90—0,98); 2) фильтрационные методы, 3) гравитационные методы. Наиболее простыми являются гравитационные методы. Сущность их состоит в центрифугировании исследуемого образца крови, при этом чем дольше деформируемость эритроцитов, тем плотнее будет их «упаковка» после центрифугирования. В качестве критериев оценки деформируемости служат либо скорость «упаковки» форменных элементов при центрифугировании, либо прирост слоя плазмы после повторного центрифугирования. Достоинствами метода являются его простота и доступность. В то же время на процесс «упаковки» форменных элементов (в цельной крови) влияют и иные факторы — концентрация белков в плазме, наличие других форменных элементов (не эритроцитов) и т.д., что повышает погрешность методики. Сущность фильтрационных методов сводится к определению давления, испытываемого сеткой с мелкой ячейкой при активном «продавливании» через нее исследуемого образца крови [Swan R. et al., 1964]. При измерении необходимо учитывать размеры ячеек — они не должны быть слишком крупными, так как при этом доля деформируемости в суммарном давлении на сетку уменьшается, что приводит к увеличению погрешности измерения. Чрезмерно маленькие ячейки также приводят к большим погрешностям измерения, но уже при наличии в крови эритроцитарных агрегатов. В настоящее время популярность этого метода несколько уменьшилась. Широко распространенным методом исследования упругости эритроцитов является ротационная и капиллярная
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 328; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.237.169 (0.012 с.) |