Развитие логики в связи с проблемой обоснования математики 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Развитие логики в связи с проблемой обоснования математики



Немецкий математик и логик Готтлоб Фреге (1848-1925) пред­принял попытку свести математику к логике. С этой целью в пер­вой своей работе по математической логике “Исчисление поня­тий” (“Begriffsschrift”) он определил множество как объем понятия и таким образом получил возможность определить и число через объем понятия. Такое определение числа он сформулировал в “Ос­нованиях арифметики” (“Grundlagen der Arithmetik”), книге, которая в то время осталась незамеченной, но впоследствии получила широкую известность. Здесь Фреге определяет число, прина­длежащее понятию, как объем этого понятия. Два понятия счи­таются равночисленными, если множества, выражающие их объ­емы, можно поставить во взаимооднозначное соответствие друг с другом. Так, например, понятие “вершина треугольника” равно­численно понятию “сторона треугольника”, и каждому из них принадлежит одно и то же число 3, являющееся объемом поня­тия “вершина треугольника”.

Если Лейбниц только наметил программу сведения матема­тики к логике, то Г. Фреге предпринял попытку сведения до­вольно значительной части арифметики к логике, т. е. произвел некоторую математизацию логики'. Символические обозначения, принятые им, очень громоздки, и поэтому мало кто полностью прочитал его “Основные законы арифметики”. Впрочем, и сам Фреге особенно не рассчитывал на это. Тем не менее труд Фреге сыграл значительную роль в истории обоснования математики в первой половине XX в. Об этом своем произведении Фреге писал: “В моих “Основаниях арифметики” (1884) я пытался привести аргументы в пользу того, что арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никаких основ доказательства. В этой книге (речь идет об “Ос­новных законах арифметики - А. Г.) это должно быть подтвер­ждено тем, что простейшие законы арифметики здесь выводят­ся только с помощью логических средств”2.

Итак, Фреге полагал, что он логически определил число и точно перечислил логические правила, с помощью которых мо­жно определять новые понятия и доказывать теоремы, и что та­ким образом он и сделал арифметику частью логики. Фреге не подозревал, однако, что построенная им система не только не представляла собой логического обоснования содержательной арифметики, но была даже противоречивой. Это противоречие в системе Фреге обнаружил Бертран Рассел.

В послесловии к “Основным законам арифметики” Фреге пи­сал по этому поводу: “Вряд ли есть что-нибудь более нежела­тельное для автора научного произведения, чем обнаружение по завершении его работы, что одна из основ его здания оказывает­ся пошатнувшейся. В такое положение я попал, получив письмо от господина Бертрана Рассела, когда печатание этой книги бли­зилось к концу”'. Противоречием, который обнаружил Рассел в системе Фреге, был знаменитый парадокс Рассела о множестве всех нормальных множеств (см. с. 226-227 учебника).

Причину своей неудачи Фреге видел в использованном им предположении, что у всякого понятия есть объем в смысле по­стоянного, строго фиксированного множества, не содержащего в себе никакой неопределенности или расплывчатости. Ведь именно через этот объем он и определил основное понятие мате­матики - понятие числа.

Вслед за Г. Фреге очередную попытку сведения математики к логике предпринял видный английский философ и логик Бер­тран Рассел (1872-1970). Он также автор ряда работ из областей истории, литературы, педагогики, эстетики, естествознания, со­циологии и др. Труды Рассела по математической логике оказа­ли большое влияние на ее развитие. Вместе с английским логи­ком и математиком А. Уайтхедом2 Рассел разработал оригиналь­ную систему символической логики в фундаментальном трех­томном труде “Principia Mathematica”3. Выдвигая идею сведения математики к логике, Рассел считает, что если гипотеза относит­ся не к одной или нескольким частным вещам, но к любому пред­мету, то такие выводы составляют математику. Таким образом, он определяет математику как доктрину, в которой мы никогда не знаем ни того, о чем мы говорим, ни того, верно ли то, что мы говорим.

Рассел делит математику на чистую и прикладную. Чистая математика, по его мнению, есть совокупность формальных выводов, независимых от какого бы то ни было содержания, т. е. это класс высказываний, которые выражены исключительно в терминах переменных и только логических констант. Рассел не только вполне уверен в том, что ему удалось свести математику к такого рода предложениям, но делает из этого утверждения вывод о существовании априорного знания, считает, что “мате­матическое познание нуждается в посылках, которые не базиро­вались бы на данных чувства”'.

От чистой математики Рассел отличает прикладную математи­ку, которая состоит в применении формальных выводов к матери­альным данным.

Для того чтобы показать, что чистая математика сводится к логике, Рассел берет систему аксиом арифметики, сформулиро­ванную Пеано, и пытается их логически доказать, а три неопре­деляемые у Пеано понятия: “нуль”, “число”, “следующее за” - определить в терминах своей логической системы. Все натураль­ные числа Рассел также считает возможным выразить в терми­нах логики, а следовательно, свести арифметику к логике. А так как, по его мнению, вся чистая математика может быть сведена к арифметике, то математика может быть сведена к логике. Рас­сел пишет: “Логика стала математической, математика логичес­кой. Вследствие этого сегодня совершенно невозможно провес­ти границу между ними. В сущности это одно и то же. Они различаются, как мальчик и мужчина; логика - это юность мате­матики, а математика - это зрелость логики”2. Рассел считает, что не существует пункта, где можно было бы провести резкую границу, по одну сторону которой находилась бы логика, а по другую - математика.

Но в действительности математика несводима к логике. Предметы изучения этих наук различны. Нами ранее были ука­заны характерные черты, присущие логике как науке (см. с.141-142). У математики другие задачи и функции.

В большом труде “Principia Mathematica” есть две стороны. Первая - заставляющая видеть в нем один из основных истоков современной математической логики. Все, что связано с этой сто­роной Principia Mathematica, получило в дальнейшем такое раз­витие в математической логике, которое сделало эту новую об­ласть науки особенно важной для решения не только труднейших задач теоретической математики и ее обоснования, но и целого ряда весьма важных для практики задач вычислительной матема­тики и техники.

Другая сторона этого произведения - точнее, даже не самого этого произведения, а философских “обобщений”, делаемых логицистами со ссылкой на него, - принадлежит уже к области по­пыток использовать его для “доказательства” положения, что математика-де сводится к логике. Именно эта сторона сомнительна, и ее опровергает дальнейшее развитие науки, которое обнаружи­ло, что попытка Рассела безуспешна. И это не случайно. Дело не в том, что Рассел в каком-то смысле не совсем удачно построил свою систему. Дело в том, что вообще нельзя построить формаль­ную “логическую систему” с точно перечисленными и эффективно выполнимыми правилами вывода, в которой можно было бы фор­мализовать всю содержательную арифметику. Это обстоятельство представляет собой содержание известной теоремы австрийского математика и логика К. Гёделя о неполноте формализованной арифметики', из которой следует непосредственно, что определе­ние математических понятий в терминах логики хотя и обнару­живает некоторые их связи с логикой, тем не менее не лишает их специфически математического содержания. Формализованная система имеет смысл лишь при наличии содержательной науч­ной теории, систематизацией которой данная формализованная система должна служить.

Однако Г. Фреге и Б. Рассел в своем логическом анализе при­шли к ряду интересных результатов, относящихся к понятиям “предмет”, “имя”, “значение”, “смысл”, “функция”, “отношение” и др. Особо следует подчеркнуть значение разработанной Рассе­лом теории типов (простой и разветвленной), цель которой состо­ит в том, чтобы помочь разрешить парадоксы в теории множеств. Рациональное зерно разветвленной теории Рассела состоит в том, что она является конструктивной теорией.

Одним из оснований деления логики служит различие приме­няемых в ней принципов, на которых базируются исследования. В результате такого деления имеем классическую логику и неклассические логики. В. С. Меськов выделяет такие осново­полагающие принципы классической логики:

“1) область исследования составляют обыденные рассужде­ния, рассуждения в классических науках;

2) допущение о разрешимости любой проблемы;

3) отвлечение от содержания высказываний и от связей по смыслу между ними;

4) абстракция двузначности высказываний”'., Неклассические логики отступают от этих принципов. К ним относятся интуиционистская логика, конструктивные логики, многозначные, модальные, положительные, паранепротиворечи-вые и другие логики, к изложению которых мы переходим.

 

Интуиционистская логика

Интуиционистская логика построена в связи с развитием ин­туиционистской математики. Интуиционистская школа основа­на в 1907 г. голландским математиком и логиком Л. Брауэром (1881-1966)2, но некоторые ее идеи выдвигались и ранее.

Интуиционизм - философское направление в математике и логике, отказывающееся от использования абстракции актуаль­ной бесконечности, отвергающее логику как науку, предшест­вующую математике, и рассматривающее интуитивную ясность и убедительность (“интуицию”) как последнюю основу матема­тики и логики. Интуиционисты свою интуиционистскую мате­матику строят с помощью финитных (конечных) средств на ос­нове системы натуральных чисел, которая считается известной из интуиции. Интуиционизм включает в себя две стороны - фи­лософскую и математическую.

Математическое содержание интуиционизма изложено в ряде работ математиков. Ведущие представители отечественной шко­лы конструктивной математики отмечают положительное зна­чение некоторых математических идей интуиционистов.

В целом конструктивная математика существенно отличает­ся от интуиционистской, но, как указывал советский математик-конструктивист А. А. Марков, конструктивное направление име­ет точки соприкосновения с интуиционистской математикой. Конструктивисты сходятся с интуиционистами в понимании дизъюнкции и в силу этого признают правильной данную Брауэром критику закона исключенного третьего. Вместе с тем кон­структивисты считают неприемлемыми методологические ос­новы интуиционизма.

Если математический аспект интуиционизма имеет рациональ­ный смысл (в этой связи предпочтительнее говорить об интуицио­нистской математике или интуиционистской логике, а не об ин­туиционизме), то второй его аспект - философско-методологический - совершенно неприемлем.

Брауэр считал, что чистая математика представляет собой сво­бодное творение разума и не имеет никакого отношения к опыт­ным фактам. У интуиционистов единственным источником ма­тематики оказывается интуиция, а критерием приемлемости математических понятий и выводов является “интуитивная яс­ность”. Но интуиционист Гейтинг вынужден был признаться в том, что понятие интуитивной ясности в математике само не является интуитивно ясным; можно даже построить нисходящую шкалу степеней очевидности.

Основой происхождения математики в конечном итоге явля­ется не какая-то “интуитивная ясность”, а отражение в созна­нии пространственных форм и количественных отношений действительного мира. Гейтинг, как и Брауэр, в гносеологии субъ­ективный идеалист. Он считает, что математическая мысль не выражает истину о внешнем мире, а связана исключительно с умственными построениями'.

Еще в 1936 г. советский математик А.Н. Коломогоров подверг критике субъективно-идеалистические основы интуиционизма, заявив, что невозможно согласиться с интуиционистами, когда они говорят, что математические объекты являются продуктом конструктивной деятельности нашего духа, ибо математичес­кие объекты являются абстракциями реально существующих форм независимой от нашего духа действительности. Интуиционисты не признают практику и опыт источником формиро­вания математических понятий, методов математических по­строений и методов доказательств.

Особенности интуиционистской логики вытекают из характер­ных признаков интуиционистской математики.

В современной классической математике часто прибегают к косвенным доказательствам. Но их почти невозможно ввести в интуиционистскую математику и логику, так как там не призна­ются закон исключенного третьего и закон и которые участвуют в косвенных доказательствах. Но закон непротиворе­чия представители как интуиционистской, так и конструктив­ной логики считают неограниченно применимым.

Закон исключенного третьего для бесконечных множеств в интуиционистской логике не проходит потому, что р требу­ет общего метода, который по произвольному высказыванию р позволил бы получать доказательство, либо доказательство от­рицания. Гейтинг считает, что так как интуиционисты не рас­полагают таким методом, то они не вправе утверждать и прин­цип исключенного третьего. Покажем это на таком примере. Возьмем утверждение: “Всякое целое число, большее единицы, либо простое, либо сумма двух простых, либо сумма трех про­стых”. Неизвестно, так это или не так в общем случае, хотя в рассмотренных случаях, которых конечное число, это так. Суще­ствует ли число, которое не удовлетворяет этому требованию? Мы не можем указать такое число и не можем вывести противо­речие из допущения его существования.

Эта знаменитая проблема X. Гольдбаха была поставлена им в 1742 г. и не поддавалась решению около 200 лет. Гольдбах высказал предположение, что всякое целое число, большее или равное шести, может быть представлено в виде суммы трех простых чисел. Для нечетных чисел это предположение было доказано только в 1937 г. советским математиком академиком И. М.Виноградовым; все достаточно большие нечетные числа представимы в виде суммы трех простых чисел. Это - одно из крупнейших достижений современной математики.

Брауэр первый наметил контуры новой логики. Идеи Брауэра формализовал Гейтинг, в 1930 г. построивший интуиционистское исчисление предложений с использованием импликации, конъ­юнкции, дизъюнкции и отрицания на основе 11 аксиом и двух правил вывода - modus ponens и правила подстановки. Гейтинг утверждает, что хотя основные различия между классической и интуиционистской логиками касаются свойств отрицания, эти логики не совсем совпадают и в формулах без отрицания. Он от­личает математическое отрицание от фактического: первое выра­жается в форме конструктивного построения (выполнения) определенного действия, а второе говорит о невыполнении действия (“невыполнение” чего-либо не является конструктивным дейст­вием). Интуиционистская логика имеет дело только с математи­ческими суждениями и лишь с математическим отрицанием, ко­торое определяется через понятие противоречия, а понятие противоречия интуиционисты считают первоначальным, выража­ющимся или приходящимся в форме 1 = 2. Фактическое отрица­ние не связано с понятием противоречия.

Проблемами интуиционистской логики занимаются также фи­лософы К. Н. Суханов, М. И. Панов, А. Л. Никифоров и др.

Конструктивные логики

Конструктивная логика, отличная от логики классической, сво­им рождением обязана конструктивной математике. Конструк­тивная математика может быть кратко охарактеризована как аб­страктная умозрительная наука о конструктивных процессах и на­шей способности их осуществлять. В результате конструктивно­го процесса возникает конструктивный объект, т. е. такой объект, который задается эффективным (точным и вполне понятным) спо­собом построения (алгоритмом).

Конструктивное направление (в математике и логике) ограни­чивает исследование конструктивными объектами и проводит его в рамках абстракции потенциальной осуществимости (реализуемо­сти), т. е. игнорирует практическое ограничение наших возможностей построений в пространстве, времени, материале.

Между идеями конструктивной логики советских исследовате­лей и некоторыми идеями интуиционистской логики (например, в понимании дизъюнкции, в отказе от закона исключенного третье­го) имеются точки соприкосновения.

Однако между конструктивной и интуиционистской логика­ми имеются и существенные отличия.

1. Различные объекты исследования. В основу конструк­тивной логики, которая является логикой конструктивной мате­матики, положена абстракция потенциальной осуществимости, а в качестве объектов исследования допускаются лишь констру­ктивные объекты (слова в определенном алфавите).

В основу интуиционистской логики, которая является логи­кой интуиционистской математики, положена идея “свободно становящейся последовательности”, т. е. строящейся не по ал­горитму, которую интуиционисты считают интуитивно ясной.

2. Обоснование интуиционистской математики и логики дается с помощью идеалистически истолкованной интуиции, а обоснование конструктивной математики и логики дается на базе математического понятия алгоритма (например, нормального алгоритма А. А. Маркова) или эквивалентного ему понятия рекурсивной функции.

3. Различные методологические основы. Методологической основой конструктивного направления в математике является признание практики источником познания и критерием его ис­тинности (в том числе и научного). Это положение сохраняет свою силу и для таких наук, как логика и математика, хотя здесь практика входит в процесс познания лишь опосредованно, в ко­нечном счете.

Интуиционисты же считают источником формирования ма­тематических понятий и методов первоначальную “интуицию”, а критерием истинности в математике - “интуитивную ясность”.

4. Различные интерпретации 1. А. Н. Колмогоров интерпретировал интуиционистскую логику как исчисление задач. А. А. Марков интерпретировал логические связки конструктивной логики как прилагаемые к потенциально осуществимым конструктивным процессам (действиям).

Интуиционистская логика Л. Брауэра и А. Рейтинга интерпре­тируется ими как исчисление предложений (высказываний), при­чем область высказываний у них ограничивается математичес­кими предложениями.

5. Отличие ряда логических средств. Представители узко-конструктивной логики признают в качестве принципа: если име­ется алгоритмический процесс и удалось опровергнуть, что он продолжается бесконечно, то, следовательно, процесс закончит­ся. Некоторые из представителей конструктивной логики дока­зывают этот принцип в уточненной форме.

Представители интуиционистской логики не признают дан­ного принципа.

Конструктивные исчисления высказываний В. И. Гливенко и А. Н. Колмогорова

Первыми представителями конструктивной логики были математики А. Н. Колмогоров (1903-1987) и В. И. Гливенко (1897-1940). Первое исчисление, не содержащее закон исключенного третьего, было предложено в 1925 г. А. Н. Колмого­ровым в связи с его критикой концепции Л. Брауэра, а в даль­нейшем развито В. И. Гливенко. Позже было опубликовано исчисление Гейтинга, которое Колмогоров интерпретировал как исчисление задач, что породило содержательное истолко­вание исчислений, не пользующихся законом исключенного третьего, а это, в свою очередь, легло в основу всех дальней­ших, подлинно научных исследований таких исчислений.

Введя понятия “псевдоистинность” (двойное отрицание суждения) и “псевдоматематика” (“математика псевдоистинно­сти”), Колмогоров доказал, что всякий вывод, полученный с помощью закона исключенного третьего, верен, если вместо каж­дого суждения, входящего в его формулировку, поставить суж­дение, утверждающее его двойное отрицание. Тем самым он показал, что в “математике псевдоистинности” законно приме­нение принципа исключенного третьего.

Колмогоров различает две логики суждений – общую и част­ную. Различие между ними заключается в одной аксиоме А, которая имеется лишь среди аксиом частной логики. Интересна диалектика соотношения содержания и областей применения этих логик: содержание частной логики суждений богаче, чем общей, так как частная логика дополнительно включает аксиому А, но область применения ее уже. Из системы частной логики мож­но вывести все формулы традиционной логики суждений.

Какова же область применения частной логики суждений? Все ее формулы верны для суждения типа А., в том числе для всех финитных и для всех отрицательных суждений, т. е. область применимости ее совпадает с областью применимости фор­мулы двойного отрицания А. (Символами А.,В.... обозна­чены произвольные суждения, для которых из двойного отрица­ния следует само суждение).



Поделиться:


Последнее изменение этой страницы: 2016-12-26; просмотров: 647; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.86.56 (0.025 с.)