ТОП 10:

Трехзначная система Гейтинга



В двузначной логике из закона исключенного третьего выво­дятся: 1) →х; 2) х . Исходя из утверждения, что истин­ным является лишь второе, нидерландский логик и математик А. Рейтинг (1898-1980) разработал трехзначную пропозицио­нальную логику. В этой логической системе импликация и от­рицание отличаются от определений этих операций у Лукасеви­ча лишь в одном случае. “Истина” обозначается 1, “ложь” - 0, “неопределенность” -1/2. Тавтология принимает значение 1.

Импликация Гейтинга

x \ y ?
?
?

Отрицание Гейтинга

x Nx
?

Конъюнкция и дизъюнкция определяются обычным способом как минимум и максимум значении аргументов.

Если учитывать лишь значения функций 1 и 0, то из матриц системы Гейтинга вычленяются матрицы двузначной логики.

 

этой трехзначной логике закон непротиворечия является тавто­логией, но ни закон исключенного третьего, ни его отрицание тав­тологиями не являются. Оба правильных модуса условно-категорического силлогизма, формула (ху) → ( ), правила де Моргана и закон исключенного четвертого (x )- тавтологии.

Хотя по сравнению с логикой Лукасевича в матрицах отрица­ния и импликации Рейтингом в его системе были произведены небольшие изменения, результаты оказались значительными: в системе Рейтинга являются тавтологиями многие формулы классического двузначного исчисления высказываний.

т-значиая система Поста (Рт )1

Система американского математика и логика Э. Л. Поста (1897- 1954) является обобщением двузначной логики, ибо при т = 2 в качестве частного случая мы получаем двузначную логику. Значения истинности суть 1, 2, ..., т (при т 2), где т -конечное число. Тавтологией является формула, которая всегда принимает выделенное значение, лежащее между 1 и т - 1, вклю­чая их самих.

Пост вводит два вида отрицания (N1x и N2х) соответственно называемые циклическим и симметричным. Они определяются путем матриц и посредством равенств.

Первое отрицание определяется двумя равенствами:

1. [N1x]=[x]+1 при [х] т-1.

2. [N1m]=1.

Второе отрицание определяется одним равенством:

[N 2 x]=m-[x]+1

Характерной особенностью двух отрицаний Поста является то, что при т = 2 эти отрицания совпадают между собой и с отрицанием двузначной логики, что подтверждает тезис: многозначная система Поста есть обобщение двузначной логики.

Этапы развития логики как науки и основные направления современной символической логики

 

X N 1x N 2 x
m
m – 1
m –2
m – 3
. . .
. . .
. . .
m – 1 m
m

Конъюнкция и дизъюнкция определяются соответственно как максимум и минимум значений аргументов. При указанных опре­делениях отрицания, конъюнкции и дизъюнкции обнаруживается, что при значении для х, большем двух, законы непротиворечия и исключенного третьего, а также отрицание этих законов не явля­ются тавтологиями.

Трехзначная система Р3 Поста имеет следующую указанную в таблицах форму. В этих таблицах приняты обозначения, введенные Постом при m = 3: первое отрицание обозначается через ( ~ 3 р ), второе отрицание - через ( 3 р ), конъюнкция через (р.3 р), дизъюнкция - через

рv3 р), импликация - через (р 3 q), эквиваленты - через ( р 3 q ).

р ~3 p ?3 p
 
Пояснения Первое отрицание Второе отрицание

 

q \ p р.3q рv3q р 3q р 3 q .      
Пояснения max(p,q) min(p,q) ( 3 р) v3q (р 3q)^3(q p)  
                                   

 

Если в качестве значений истинности взяты лишь 1 “истина” и 3 “ложь”, то из таблиц системы Р3 Поста вычленяются табли­цы для отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции двузначной логики.

В системе Р3 тавтология принимает значение 1; закон ис­ключенного третьего не является тавтологией ни для первого, ни для второго отрицания Поста, но является тавтологией закон исключенного четвертого для первого отрицания.

Две бесконечнозначные системы Гетмановой:

“Логика истины” и “Логика лжи”

Бесконечнозначная “Логика истины” как обобщение многозначной системы Поста

Исходя из т-значной системы Э. Л. Поста автор этого учебника А. Д. Гетманова построила бесконечнозначную систему Gxo. J В ней значениями истинности являются: 1 (“истина”), 0 (“ложь”) и все дробные числа в интервале от 1 до 0, построен­ные в форме (1/2)k и в форме (1/2)k*(2k - 1), где k-целочислен­ный показатель. Иными словами, значениями истинности являются: 1, 1/2 , 1/4, 3/4 , 1/8, 7/8, 1/16, 15/16,….., (1/2)k, (1/2)k*(2k-1),….,0.

Операции: отрицание, дизъюнкция, конъюнкция, импликация и эквиваленция в Gxo- определены следующими равенствами:

1. Отрицание: [ х0 р]=1-[p]

2. Дизъюнкция: [р v х0 q ] = max([p], [q]).

3. Конъюнкция: [р х0q] = min([p],[qj).

4. Импликация: [р = х0х0 q] = [ х0 p vq].

5. Эквиваленция: [р х0q] = [(р х0q) х0 (q х0 р)]

Отрицание в системе Gxo является обобщением второго (симметричного) отрицания т-значной логики Поста. Посредст­вом именно этого отрицания строятся конъюнкция, импликация и эквиваленция в системе Gхо . Система Gхо , построенная пред­ложенным способом, имеет множество тавтологий. (Тавтология принимает значение 1).

Тавтологии в бесконечнозначной “Логике истины” (т. е. в Gхо) являются тавтологиями в двузначной логике, ибо Gхо является обоб­щением системы Р Поста, а последняя есть обобщение двузначной логики. Из системы Gхо вычленяются G3 ,G4 .,G5,G6,...,Gn ,т.е. любая конечнозначная “Логика истины”.

Об интерпретации системы Gхо

В системе Gхо между крайними значениями истинности: 1 (“истина”) и 0 (“ложь”) лежит бесконечное число значений истинности: 1/2,1/4,3/4,1/8, 7/8 и т. д. Процесс познания осуществляется таким образом, что мы идем от незнания к знанию, от неполного, неточного знания к более полному и точному, от от­носительной истины к абсолютной. Абсолютная истина (в узком смысле) складывается из бесконечной суммы относитель­ных истин. Если значению истинности, равному 1, придать семантический смысл абсолютной истины, а значению 0 - зна­чение лжи (заблуждения, отсутствия знания), то промежуточ­ные значения истинности отразят процесс достижения абсолют­ной истины как бесконечный процесс, складывающийся из познания относительных истин, значениями которых в системе Gхо являются 1/2,1/4,3/4,1/8, 7/8 и т. д. Чем ближе значение истин­ности переменных (выражающих суждения) к 1, тем большая степень приближения к абсолютной истине. Так осуществляет­ся процесс познания: от незнания к знанию, от явления к сущно­сти, от сущности первого порядка к сущности второго порядка и т. д. Этот бесконечный процесс познания и отражает бесконечнозначная система Gхо, построенная автором как обобще­ние двузначной классической логики, характеризующей процесс познания в рамках оперирования лишь предельными значения­ми истинности - “истина” и “ложь”. Такова семантическая ин­терпретация системы Gхо (“Логика истины”), вскрывающая ее роль в процессе познания истины

Методологические проблемы

применения многозначных логик для моделирования систем с наличием элемента неопределенности. (О применении многозначных логик в социологии).

Многозначные логики используются при моделировании си­стем с наличием элемента неопределенности. Простейшим при­мером применения трехзначной логики является голосование:

“за”, “против”, “воздержался” или ответы на вопросы: “да”, “нет”, “затрудняюсь ответить”.

Более сложной методологической проблемой является примене­ние многозначных логик при построении социологических анкет. Обычно дается ряд ответов на один вопрос. Ответы формулиру­ются приблизительно так: “да”, “нет”, “скорее да, чем нет”, “ско­рее нет, чем да”, “удовлетворен в значительной степени”, “мало удовлетворен” и т. д. Все эти ответы включают значительный эле­мент неопределенности, что затрудняет выявление мнения людей в ходе социологического опроса (или анкетирования).

Автор считает возможным использовать многозначные логики с различными значениями истинности, т. е., например, 6-ти, или 8-ми, или 9-ти, или 12-значные логики. Составляющий анкету соци­олог должен предлагать конкретные значения истинности суждений, т. е. предусмотреть точные оценки, которые даст сам человек, рабо­тающий с анкетой. Например, в 9-значнои логике значениями ис­тинности будут следующие: 1,15/16,7/8,3/4,1/2 ,1/4 ,1/8, 1/16, 0.

Если человек, например, при ответе на вопрос: “Удовлетво­рен ли он своим трудом?” им полностью удовлетворен, то в соответствующем разделе он напишет 1, если же он полностью не удовлетворен, то напишет значение 0. Если он почти удовле­творен (согласен), то напишет либо 15/16 либо 7/8; если же он почти не удовлетворен, то напишет 1/16 или 1/8. Если он не знает ответа или думает неопределенно, то напишет 1/2.

При обработке информации на ЭВМ на основе данных число­вых характеристик ответов можно получить более точные зна­ния о мнении в репрезентативной выборке любого вида (стихий­ной, квотной, вероятностной и других, когда применяется непол­ная индукция) или во всей генеральной совокупности (т. е. при сплошном обследовании, когда применяется полная индукция).

Бесконечнозначная система Fхо - “Логика лжи”

Аристотель охарактеризовал ложь так: ложное говорит тот, “кто думает обратно тому, как дело обстоит с вещами”'. Ложь может быть не только измышлением о том, чего не было, но и сокрытием или отрицанием того, что было. Ложь бывает непреднамеренной (паралогизм) или преднамеренной (софизм). В мышлении ложь формулируется в виде суждений. Иногда понятие “ложь” упо­требляется как синоним понятия “заблуждение”. Ведь и ложь, и заблуждение - формы неистинного знания. Причины возникнове­ния заблуждений сходны с теми, которые порождают ложь: огра­ниченность общественно-исторической практики, абсолютизация отдельных моментов процесса познания, нарушение логических правил доказательств, человеческие эмоции, догматический стиль мышления и др. Однако в отличие от лжи заблуждение выступает как неотъемлемый момент процесса познания, диалектически связанный с истиной.

Существует специфика логического подхода к понятию “ложь”. В двузначной логике отрицание истинного суждения дает лож­ное суждение и наоборот. Сложнее обстоит дело в многозначных логиках. В трехзначных логиках имеется три значения истинно­сти: “истина”, “ложь”, “неопределенно”; при этом неистинное суждение может быть как ложным суждением, так и неопреде­ленным. В т-значной логике Поста допускается т значений ис­тинности, предельными из которых являются “истина” и “ложь”. В бесконечнозначной “Логике истины” Gхо между 1 и 0 лежит бесконечное число значений истинности.

Автор построила бесконечнозначную систему “Логики лжи” -Fxo (от англ. false - ложь), которая отражает бесконечный процесс познания, идущий от незнания не к истине, а к заблуждению. В результате человек приходит к ложным суждениям - в юридичес­кой деятельности (неверно построенные версии в процессе рассле­дования преступления), медицинской практике (постановка оши­бочного диагноза), в научном творчестве (выдвижение ложных ги­потез) и других сферах человеческой деятельности. Степень заблу­ждения бывает различной и может доходить до абсурда. Причем процесс возможного заблуждения потенциально бесконечен, что отражено в системе Fхо .

Система Fхо имеет свою интерпретацию. Ее значения истин­ности отражают степень заблуждения, возникшего в результате либо умышленной дезинформации, либо незнания, либо непра­вильного истолкования результатов эксперимента, либо допуще­ния логических ошибок, либо по другим причинам.

Значениями истинности в “Логике лжи” являются: - 1 (ложь, заблуждение), 0 (незнание, отсутствие знания) и все дробные числа в интервале от 0 до - 1, построенные по определенной форме. То есть:

- 1, - 1/2, - 1/4 , - 3/4, - 1/8, - 1/16, - 15/16,.... - (1/2)k, - (1/2)k *(2k - 1),..., 0

(где k - натуральное число).

Логические операции в Fхо определены следующими равенствами:

1. Отрицание: [u x0 р]= - 1- [р] = - (1+[p])

2. Дизъюнкция: [p x0 q]=max([p],[q]).

3. Конъюнкция: [p&x0 q]=min([p],[q]).

4. Импликация: [рp x0 q]=[ u x0p x0 q]

5. Эквиваленция: [р x0 q] = [(px0 q )&x0 (qx0p)].

Тавтология (закон логики) принимает значение 0. Например, тавтологией является правило снятия двойного отрицания.

Из бесконечнозначной системы Fхо вычленяются конечнозначные системы, F2 ,F3 ,F4 ,….. Fn.

Закон исключенного третьего, закон непротиворечия и их от­рицания в трехзначной “Логике лжи” (Fхо) не являются тавтоло­гиями, ибо в колонках, соответствующих этим формулам, присут­ствуют значения или –1/2 или как –1/2 , так как и - 1, а тавтоло­гией является формула, принимающая лишь значение 0. Если

эти законы не являются тавтологиями в трехзначной системе “Логика лжи”, то они не будут тавтологиями и в четырехзначной системе “Логика лжи” (F4) и в F5, и т. д. (т. е. в любой конечнозначной “Логике лжи”) и в бесконечнозначной “Логике лжи” Fхо.

Система Fхо и другая построенная автором бесконечнозначная логика Gхо в совокупности охватывают оба направления в процессе познания - как в сторону истины, так и, к сожалению, в сторону лжи, заблуждения.

 







Последнее изменение этой страницы: 2016-12-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.80.4.76 (0.011 с.)