Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Трехзначная система ГейтингаСодержание книги
Поиск на нашем сайте
В двузначной логике из закона исключенного третьего выводятся: 1 ) →х; 2) х . Исходя из утверждения, что истинным является лишь второе, нидерландский логик и математик А. Рейтинг (1898-1980) разработал трехзначную пропозициональную логику. В этой логической системе импликация и отрицание отличаются от определений этих операций у Лукасевича лишь в одном случае. “Истина” обозначается 1, “ложь” - 0, “неопределенность” - 1/2. Тавтология принимает значение 1. Импликация Гейтинга
Отрицание Гейтинга
Конъюнкция и дизъюнкция определяются обычным способом как минимум и максимум значении аргументов. Если учитывать лишь значения функций 1 и 0, то из матриц системы Гейтинга вычленяются матрицы двузначной логики.
этой трехзначной логике закон непротиворечия является тавтологией, но ни закон исключенного третьего, ни его отрицание тавтологиями не являются. Оба правильных модуса условно-категорического силлогизма, формула (х → у) → ( ), правила де Моргана и закон исключенного четвертого (x ) - тавтологии. Хотя по сравнению с логикой Лукасевича в матрицах отрицания и импликации Рейтингом в его системе были произведены небольшие изменения, результаты оказались значительными: в системе Рейтинга являются тавтологиями многие формулы классического двузначного исчисления высказываний. т -значиая система Поста (Рт) 1 Система американского математика и логика Э. Л. Поста (1897- 1954) является обобщением двузначной логики, ибо при т = 2 в качестве частного случая мы получаем двузначную логику. Значения истинности суть 1, 2,..., т (при т 2), где т -конечное число. Тавтологией является формула, которая всегда принимает выделенное значение, лежащее между 1 и т - 1, включая их самих. Пост вводит два вида отрицания (N1x и N2х) соответственно называемые циклическим и симметричным. Они определяются путем матриц и посредством равенств. Первое отрицание определяется двумя равенствами: 1. [ N1x ]=[ x ]+1 при [ х ] т- 1. 2. [ N1m ]=1. Второе отрицание определяется одним равенством: [ N 2 x ]= m -[ x ]+1 Характерной особенностью двух отрицаний Поста является то, что при т = 2 эти отрицания совпадают между собой и с отрицанием двузначной логики, что подтверждает тезис: многозначная система Поста есть обобщение двузначной логики. Этапы развития логики как науки и основные направления современной символической логики
Конъюнкция и дизъюнкция определяются соответственно как максимум и минимум значений аргументов. При указанных определениях отрицания, конъюнкции и дизъюнкции обнаруживается, что при значении для х, большем двух, законы непротиворечия и исключенного третьего, а также отрицание этих законов не являются тавтологиями. Трехзначная система Р3 Поста имеет следующую указанную в таблицах форму. В этих таблицах приняты обозначения, введенные Постом при m = 3: первое отрицание обозначается через (~ 3 р), второе отрицание - через ( 3 р ), конъюнкция через (р.3 р), дизъюнкция - через рv3 р), импликация - через (р 3 q), эквиваленты - через (р 3 q).
Если в качестве значений истинности взяты лишь 1 “истина” и 3 “ложь”, то из таблиц системы Р3 Поста вычленяются таблицы для отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции двузначной логики. В системе Р3 тавтология принимает значение 1; закон исключенного третьего не является тавтологией ни для первого, ни для второго отрицания Поста, но является тавтологией закон исключенного четвертого для первого отрицания. Две бесконечнозначные системы Гетмановой: “Логика истины” и “Логика лжи” Бесконечнозначная “Логика истины” как обобщение многозначной системы Поста Исходя из т -значной системы Э. Л. Поста автор этого учебника А. Д. Гетманова построила бесконечнозначную систему Gxo. J В ней значениями истинности являются: 1 (“истина”), 0 (“ложь”) и все дробные числа в интервале от 1 до 0, построенные в форме (1/2)k и в форме (1/2)k*(2k - 1), где k -целочисленный показатель. Иными словами, значениями истинности являются: 1, 1/2, 1/4, 3/4, 1/8, 7/8, 1/16, 15/16,….., (1/2)k, (1/2)k*(2k-1),….,0. Операции: отрицание, дизъюнкция, конъюнкция, импликация и эквиваленция в Gxo - определены следующими равенствами: 1. Отрицание: [ х0 р ]=1-[ p ] 2. Дизъюнкция: [ р v х0 q ] = max([ p ], [ q ]). 3. Конъюнкция: [ р х0 q ] = min([ p ],[ q j). 4. Импликация: [ р = х0х0 q ] = [ х0 p v q ]. 5. Эквиваленция: [ р х0 q ] = [(р х0 q) х0 (q х0 р)] Отрицание в системе G xo является обобщением второго (симметричного) отрицания т -значной логики Поста. Посредством именно этого отрицания строятся конъюнкция, импликация и эквиваленция в системе Gхо. Система Gхо, построенная предложенным способом, имеет множество тавтологий. (Тавтология принимает значение 1). Тавтологии в бесконечнозначной “Логике истины” (т. е. в Gхо) являются тавтологиями в двузначной логике, ибо Gхо является обобщением системы Р Поста, а последняя есть обобщение двузначной логики. Из системы Gхо вычленяются G3,G4.,G5,G6,...,Gn,т.е. любая конечнозначная “Логика истины”. Об интерпретации системы Gхо В системе Gхо между крайними значениями истинности: 1 (“истина”) и 0 (“ложь”) лежит бесконечное число значений истинности: 1/2, 1/4, 3/4,1/8, 7/8 и т. д. Процесс познания осуществляется таким образом, что мы идем от незнания к знанию, от неполного, неточного знания к более полному и точному, от относительной истины к абсолютной. Абсолютная истина (в узком смысле) складывается из бесконечной суммы относительных истин. Если значению истинности, равному 1, придать семантический смысл абсолютной истины, а значению 0 - значение лжи (заблуждения, отсутствия знания), то промежуточные значения истинности отразят процесс достижения абсолютной истины как бесконечный процесс, складывающийся из познания относительных истин, значениями которых в системе Gхо являются 1/2, 1 / 4, 3/4,1/8, 7/8 и т. д. Чем ближе значение истинности переменных (выражающих суждения) к 1, тем большая степень приближения к абсолютной истине. Так осуществляется процесс познания: от незнания к знанию, от явления к сущности, от сущности первого порядка к сущности второго порядка и т. д. Этот бесконечный процесс познания и отражает бесконечнозначная система Gхо, построенная автором как обобщение двузначной классической логики, характеризующей процесс познания в рамках оперирования лишь предельными значениями истинности - “истина” и “ложь”. Такова семантическая интерпретация системы Gхо (“Логика истины”), вскрывающая ее роль в процессе познания истины Методологические проблемы применения многозначных логик для моделирования систем с наличием элемента неопределенности. (О применении многозначных логик в социологии). Многозначные логики используются при моделировании систем с наличием элемента неопределенности. Простейшим примером применения трехзначной логики является голосование: “за”, “против”, “воздержался” или ответы на вопросы: “да”, “нет”, “затрудняюсь ответить”. Более сложной методологической проблемой является применение многозначных логик при построении социологических анкет. Обычно дается ряд ответов на один вопрос. Ответы формулируются приблизительно так: “да”, “нет”, “скорее да, чем нет”, “скорее нет, чем да”, “удовлетворен в значительной степени”, “мало удовлетворен” и т. д. Все эти ответы включают значительный элемент неопределенности, что затрудняет выявление мнения людей в ходе социологического опроса (или анкетирования). Автор считает возможным использовать многозначные логики с различными значениями истинности, т. е., например, 6-ти, или 8-ми, или 9-ти, или 12-значные логики. Составляющий анкету социолог должен предлагать конкретные значения истинности суждений, т. е. предусмотреть точные оценки, которые даст сам человек, работающий с анкетой. Например, в 9-значнои логике значениями истинности будут следующие: 1,15/16,7/8,3/4,1/2,1/4,1/8, 1/16, 0. Если человек, например, при ответе на вопрос: “Удовлетворен ли он своим трудом?” им полностью удовлетворен, то в соответствующем разделе он напишет 1, если же он полностью не удовлетворен, то напишет значение 0. Если он почти удовлетворен (согласен), то напишет либо 15/16 либо 7/8; если же он почти не удовлетворен, то напишет 1/16 или 1/8. Если он не знает ответа или думает неопределенно, то напишет 1/2. При обработке информации на ЭВМ на основе данных числовых характеристик ответов можно получить более точные знания о мнении в репрезентативной выборке любого вида (стихийной, квотной, вероятностной и других, когда применяется неполная индукция) или во всей генеральной совокупности (т. е. при сплошном обследовании, когда применяется полная индукция). Бесконечнозначная система Fхо - “Логика лжи” Аристотель охарактеризовал ложь так: ложное говорит тот, “кто думает обратно тому, как дело обстоит с вещами”'. Ложь может быть не только измышлением о том, чего не было, но и сокрытием или отрицанием того, что было. Ложь бывает непреднамеренной (паралогизм) или преднамеренной (софизм). В мышлении ложь формулируется в виде суждений. Иногда понятие “ложь” употребляется как синоним понятия “заблуждение”. Ведь и ложь, и заблуждение - формы неистинного знания. Причины возникновения заблуждений сходны с теми, которые порождают ложь: ограниченность общественно-исторической практики, абсолютизация отдельных моментов процесса познания, нарушение логических правил доказательств, человеческие эмоции, догматический стиль мышления и др. Однако в отличие от лжи заблуждение выступает как неотъемлемый момент процесса познания, диалектически связанный с истиной. Существует специфика логического подхода к понятию “ложь”. В двузначной логике отрицание истинного суждения дает ложное суждение и наоборот. Сложнее обстоит дело в многозначных логиках. В трехзначных логиках имеется три значения истинности: “истина”, “ложь”, “неопределенно”; при этом неистинное суждение может быть как ложным суждением, так и неопределенным. В т -значной логике Поста допускается т значений истинности, предельными из которых являются “истина” и “ложь”. В бесконечнозначной “Логике истины” Gхо между 1 и 0 лежит бесконечное число значений истинности. Автор построила бесконечнозначную систему “Логики лжи” - Fxo (от англ. false - ложь), которая отражает бесконечный процесс познания, идущий от незнания не к истине, а к заблуждению. В результате человек приходит к ложным суждениям - в юридической деятельности (неверно построенные версии в процессе расследования преступления), медицинской практике (постановка ошибочного диагноза), в научном творчестве (выдвижение ложных гипотез) и других сферах человеческой деятельности. Степень заблуждения бывает различной и может доходить до абсурда. Причем процесс возможного заблуждения потенциально бесконечен, что отражено в системе Fхо. Система Fхо имеет свою интерпретацию. Ее значения истинности отражают степень заблуждения, возникшего в результате либо умышленной дезинформации, либо незнания, либо неправильного истолкования результатов эксперимента, либо допущения логических ошибок, либо по другим причинам. Значениями истинности в “Логике лжи” являются: - 1 (ложь, заблуждение), 0 (незнание, отсутствие знания) и все дробные числа в интервале от 0 до - 1, построенные по определенной форме. То есть: - 1, - 1/2, - 1/4, - 3/4, - 1/8, - 1/16, - 15/16,.... - (1/2)k, - (1/2)k * ( 2 k - 1),..., 0 (где k - натуральное число). Логические операции в Fхо определены следующими равенствами: 1. Отрицание: [u x0 р ]= - 1- [ р ] = - (1+[ p ]) 2. Дизъюнкция: [ p x0 q ]=max([ p ],[ q ]). 3. Конъюнкция: [ p & x0 q ]=min([ p ],[ q ]). 4. Импликация: [ р → p x0 q ]=[ u x0p x0 q ] 5. Эквиваленция: [ р x0 q ] = [(p → x0 q)& x0 (q → x0p)]. Тавтология (закон логики) принимает значение 0. Например, тавтологией является правило снятия двойного отрицания. Из бесконечнозначной системы Fхо вычленяются конечнозначные системы, F2,F3,F4,….. Fn. Закон исключенного третьего, закон непротиворечия и их отрицания в трехзначной “Логике лжи” (Fхо) не являются тавтологиями, ибо в колонках, соответствующих этим формулам, присутствуют значения или –1/2 или как –1/2, так как и - 1, а тавтологией является формула, принимающая лишь значение 0. Если эти законы не являются тавтологиями в трехзначной системе “Логика лжи”, то они не будут тавтологиями и в четырехзначной системе “Логика лжи” (F4) и в F5, и т. д. (т. е. в любой конечнозначной “Логике лжи”) и в бесконечнозначной “Логике лжи” Fхо. Система Fхо и другая построенная автором бесконечнозначная логика Gхо в совокупности охватывают оба направления в процессе познания - как в сторону истины, так и, к сожалению, в сторону лжи, заблуждения.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-26; просмотров: 340; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.7.212 (0.007 с.) |