Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Трехзначная система Лукасевнча

Поиск

Трехзначная пропозициональная логика (логика высказыва­ний) была построена в 1920 г. польским математиком и логи­ком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначает­ся 1, “ложь” - 0, “нейтрально” – 1/2. В качестве основных функ­ций взяты отрицание (Nx) и импликация (Сху); производными являются конъюнкция (Кху) и дизъюнкция (Аху). Тавтология принимает значение 1.

Отрицание и импликация соответственно определяются мат­рицами (таблицами) так:

Импликация Лукасевича
X \ y   1/2  
    1 / 2  
1/2   l 1/2
    l  

Отрицание Лукасевича

х Nx
   
1/2 1/2
   

[ Nx ] = 1 - [ x ]

Конъюнкция определяется как минимум значений аргумен­тов: [ Кху ] = min ([ х ], [ у ] ); дизъюнкция - как максимум значений х и у [ Аху ]= таx ([ х ], [ у ] ).

Пользование таблицей для импликации Лукасевича, выражен­ной в форме ху, происходит так. Слева в первой колонке на­писаны значений для х, а сверху - значения для у. Возьмем, напри­мер [ х ] = 1/2 (т. е. значение для х, равное 1/2), а [ у ] = 0, получаем импликацию 1/2→ 0. На пересечении получаем результат 1/2.

Если в формулу входит одна переменная, как, например, в случае формулы a , то таблица истинности для этой форму­лы, включающая все возможные значения истинности, или ложности, или неопределенности ее переменной в таблице, будет состоять из 3' = 3 строки; при двух переменных в таблице будет 32 = 9 строк; при трех переменных в таблице имеем З3 = 27 строк; при n переменных будет 3 n строк.

Покажем, как происходит доказательство для формул a (закон исключенного третьего) и для (закон непротиворе­чия), содержащих одну переменную, т. е. а. В таблице будет всего 3' = 3 строки.

a a a ^
         
1/2 1/2 1/2 1/2 1/2
         

 

Для доказательства формулы a используем знание о том, что дизъюнкция берется по максимуму. В третьей колонке, со­ответствующей a, видим, что вместе со значениями 1 есть значение 1/2. Следовательно, эта формула не есть закон логики. Аналогично строятся колонки 4 и 5, только соблюдая условие, что конъюнкция берется по минимуму значений. Формула также не является законом логики.

Теперь посмотрим, является ли законом логики формула (х → ( ^ у)) → , содержащая две переменные х и у В таблице будет З2 = 9 строк. Распределение значений истинности для х и у показано в первой и второй колонках.

Вывод: так как в последней колонке встречается два раза зна­чение неопределенности (т. е. 1/2), то данная формула не является законом логики.

На основе данных определений отрицания, конъюнкции и дизъ­юнкции Лукасевича не будут тавтологиями (законами логики) за­кон непротиворечия и закон исключенного третьего двузначной логики. В системе Лукасевича не являются тавтологиями и отри­цания законов непротиворечия и исключенного третьего дву­значной логики. Поэтому логика Лукасевича не является отрица­нием двузначной логики. В логике Лукасевича тавтологиями являются: правило снятия двойного отрицания, все четыре пра­вила де Моргана и правило контрапозиции: аb . Не являются тавтологиями правила приведения к абсурду двузначной логики; ) → и → ( ^ у)) (т. е. если из х вы­текает противоречие, то из этого следует отрицание х). Это было доказано (см. таблицу 3).

Таблица 3

x у ^ y x →( ^ y) (x( ^у))
    0 0 0 0  
  1/2   1/2 1/2 1/2 1/2
             
1/2   1/2     1/2  
1/2 1/2 1/2 1/2 1/2   1/2
1/2   1/2        
             
  1/2   1/2 1/2    
             

В системе Лукасевича не являются тавтологиями и некото­рые формулы разделительно-категорического силлогизма с не­строгой дизъюнкцией.

Все тавтологии логики Лукасевича являются тавтологиями в двузначной логике, ибо если отбросить значение 1/2, то в логике

Лукасевича и в двузначной логике определение функций конъюнкции, дизъюнкции, импликации и отрицания соответст­венно совпадут. Но так как в логике Лукасевича имеется третье значение истинности –1/2, то не все тавтологии двузначной ло­гики являются тавтологиями в логике Лукасевича.



Поделиться:


Последнее изменение этой страницы: 2016-12-26; просмотров: 245; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.205.149 (0.008 с.)