ТОП 10:

Специфика закона непротиворечия в неклассических логиках



В результате исследования 9 формализованных логических систем выявлено, что из 12 приведенных видов отрицания для 7 видов закон непротиворечия является тавтологией (или дока­зуемой формулой), для остальных же 5 закон непротиворечия тавтологией (доказуемой формулой) не является. По сравнению с законом исключенного третьего закон непротиворечия более устойчив.

Закон непротиворечия не является тавтологией во многих мно­гозначных логиках. В классической, интуиционистской и кон­структивных логиках закон непротиворечия, наоборот, признается неограниченно действующим. Причина в том, что в многознач­ных логиках число значений истинности может быть как конеч­ным (большим 2), так и бесконечным. В логических системах, в которых отражена жесткая ситуация, “или - или” (истина - ложь), закон непротиворечия и закон исключенного третьего -тавтологии. Но это предельные случаи в познании (истина или ложь). Если же в процессе познания мы еще не достигли исти­ны или еще не опровергли какое-либо утверждение (доказав его ложность), то нам приходится оперировать не истинными или ложными, а неопределенными суждениями.

Классическая двузначная логика должна быть дополнена мно­гозначными логиками, в частности бесконечнозначной логикой, которая применима в процессе рассуждения об объектах, отража­емых в понятиях с нефиксированным объемом, и бесконечное число значений истинности которой лежит в интервале от 1 до 0. Совсем другие ситуации в познании отражены в конструктив­ных и интуиционистской логиках: конструктивный процесс или имеется (осуществляется), или его нет, но то и другое не может иметь места одновременно по отношению к одному и тому же кон­структивному объекту или процессу, поэтому закон непротиворе­чия в этих логиках действует неограниченно. В конструктивных логиках приняты абстракции, отличные от тех, которые приняты в многозначных логиках. В конструктивных и интуиционистской логиках принимаются лишь два знамения истинности - истина и ложь, доказуемо (выводимо) или недоказуемо (невыводимо), поэ­тому закон непротиворечия - выводимая формула.

Однако независимо от того, является ли закон непротиворе­чия в той или иной логической системе тавтологией или не яв­ляется, сами логические системы строятся непротиворечиво:

иными словами, метатеория (металогика) построения форма­лизованных систем подчиняется закону непротиворечия, иначе такие системы были бы бесполезными, так как в них было бы выводимо все что угодно - как истина, так и ложь.

Очень важным в гносеологическом и логическом плане резуль­татом является то, что закон непротиворечия и закон исключен­ного третьего нельзя опровергнуть, так как отрицание этих зако­нов ни в одной из известных форм, ни в одной из исследованных автором 18 логических системах не является тавтологией (или выводимой, доказуемой формулой), что свидетельствует об их фундаментальной роли в познании. Закон непротиворечия - один из основных законов правильного человеческого мышления - ус­тойчив, его нельзя опровергнуть и заменить другим, в противном случае стерлось бы различие в познании между истиной как его целью и ложью.

Многообразие логических систем свидетельствует о развитии науки логики в целом и ее составных частей, в том числе теории основных фундаментальных формально-логических законов - за­кона непротиворечия и закона исключенного третьего.

Модальные логики

В классической двузначной логике рассматривались простые и сложные ассерторические суждения, т. е. такие, в которых не установлен характер связи между субъектом и предикатом, например: “Морская вода соленая” или “Дождь то начинал хле­стать теплыми крупными каплями, то переставал”.

В модальных суждениях раскрывается характер связи между субъектом и предикатом или между отдельными простыми суждениями в сложном модальном суждении. Например: “Необходимо, что металлы - проводники электрического тока” или “Если будет дуть попутный ветер, то, возможно, мы приплывем в гавань до наступления темноты”.

Модальными являются суждения, которые включают мо­дальные операторы (модальные понятия), т. е. слова “необхо­димо”, “возможно”, “невозможно”, “случайно”, “запрещено”, “хорошо” и многие другие (см. главу III, § 6 “Деление сужде­ний по модальности”). Модальные суждения рассматривают­ся в специальном направлении современной формальной ло­гики - в модальной логике.

Изучение модальных суждений имеет длительную и многогран­ную историю. Мы отметим лишь некоторые из ее аспектов. Мо­дальности в логику были введены Аристотелем. Термин “воз­можность”, по Аристотелю, имеет различный смысл. Возможным он называет и то, что необходимо, и то, что не необходимо, и то, что возможно. Исходя из понимания модальности “возможность”, Аристотель писал о неприменимости закона исключенного тре­тьего к будущим единичным событиям.

Наряду с категорическим силлогизмом Аристотель исследу­ет и модальный силлогизм, у которого одна или обе посылки и заключение являются модальными суждениями. Я. Лукасевич в книге “Аристотелевская силлогистика с точки зрения современ­ной формальной логики” две главы посвящает аристотелевской модальной логике предложений (гл. VI) и модальной силлоги­стике Аристотеля (гл. VIII)'. Аристотель рассматривает модаль­ную силлогистику по образцу своей ассерторической силлоги­стики: силлогизмы подразделяются на фигуры и модусы, неправильные модусы отбрасываются с помощью их интерпре­тации на конкретных терминах.

Согласно Аристотелю, случайность есть то, что не необхо­димо и не невозможно, т. е. р - случайно означает то же самое, что и р - не необходимо и р - не невозможно, но Лукасевич отмечает, что аристотелевская теория случайных силлогизмов полна серьезных ошибок2. Итог исследований Лукасевича та­кой: пропозициональная модальная логика Аристотеля имеет ог­ромное значение для философии; в работах Аристотеля можно найти все элементы, необходимые для построения полной систе­мы модальной логики; однако Аристотель исходил из двузначной логики', в то время как модальная логика не может быть двузнач­ной. К идее многозначной логики Аристотель подошел вплотную, рассуждая о “будущем мореном сражении”. Следуя Аристотелю, Лукасевич в 1920 г. построил первую многозначную (трехзнач­ную) логику. Так осуществляется связь модальных и многознач­ных логик.

Значительное внимание разработке модальных категорий уде­ляли философы в Древней Греции и особенно Диодор Крон, рас­сматривавший модальности в связи с введенной им временнбй переменной. В средние века модальным категориям также уделя­лось большое внимание. В XIX в. категорию вероятности разрабатывали Дж. Буль и П. С. Порецкий.

Возникновение модальной логики как системы датируется 1918г., когда американский логик и философ Кларенс Ирвинг Льюис (1883-1964) в работе “A Survey of Symbolic Logic” сформулировал модальное исчисление, названное им впослед­ствии S3.

В книге “Simbolic Logik”, написанной им совместно с К. Лэнгфордом в 1932 г., он сформулировал еще пять модальных логиче­ских систем, связанных с S3 и между собой. Это - системы S1, S2, S4, S5,S6.

Приведем описание модальной системы S12.

I. Исходные символы:

1. р, q, r и т. д. - пропозициональные переменные;

2. ~ р - отрицание р

3. р* q – конъюнкция p и q;

4.р q- строгая импликация льюисовской системы;

5. ()р- модальный оператор возможности (возможно p);

6. р = q - строгая эквивалентность, р = q равносильно (р q)*(q p)

II. Аксиомы системы S1:

1) p*q q*p;

2) p*q p;

3) p p*p;

4) (p*q)*r p*(q*r),

5) р ~ ~ р;

6)(p q)*(q r) [p r};

7) p*(p q) q.

Аксиома 5 может быть выведена из остальных, как было по­казано позднее. Так как конъюнкция связывает “сильнее”, чем импликация, то скобки можно опустить или заменить их точка­ми; как это сделано у Льюиса.

III. Правила вывода S1:

1) Правило подстановки. Любые два эквивалентных друг дру­гу выражения взаимозаменимы.

2) Любая правильно построенная формула может быть подставлена вместо р, или q. или r и т. д. в любом выражении.

3) Если выводим о р и выводим о q, то выводимо р • q .

4) Если выводим о р и выводим о р q , то выводимо q.

 

Льюис построил модальную пропозициональную логику S1 в виде расширения немодального (ассерторического) пропозицио­нального исчисления. При этом основные черты S1и других его исчислений были скопированы с формализованной логической системы Principia Mathematica Рассела и Уайтхеда, сформули­рованы с помощью понятий, только терминологически отличаю­щихся от понятий, использованных в Principia Mathematica. Кро­ме Рассела и Уайтхеда, идеи классической логики развивали многие современные математические логики, например, амери­канский логик и математик С. Клини'. Исчисления Льюиса построены аксиоматически по образцу Principia, и по аналогии с Principia Льюис доказывает ряд специфических теорем.

В классической двузначной логике логическое следование отождествляется с материальной импликацией и допускают­ся такие формы вывода:

p→ (q→p). (1)

т. е. истинное суждение следует из любого суждения (“исти­на следует откуда угодно”),

p→( →q) (2)

 

т. е. из ложного суждения следует любое суждение (“из лжи сле­дует все, что угодно”). Это противоречит нашему содержательно­му, практическому пониманию логического следования, поэтому данные формулы, как и некоторые другие, и соответствующие им принципы логического следования называются парадоксами ма­териальной импликации.

Льюис создал свои новые системы с целью избежать этих парадоксов и ввести новую импликацию, названную им “стро­гой импликацией”, такую, чтобы логическое следование представлялось не чисто формально, а по смыслу (содержатель­но) и новая импликация была ближе к связке естественного язы­ка “если, то”. В строгой импликации Льюиса р q невозможно утверждать антецедент, т. е. р, и отрицать консеквент, т. е. q 1.

В системах Льюиса были устранены парадоксы материаль­ной импликации, т.е. формулы (1) и (2) стали невыводимыми, но появились парадоксы строгой импликации. К ним относятся, например, такие формулы:

(~ () ~p) (q p) (3)

(~ () p) (p q) (4)

Итак, отождествлять строгую импликацию Льюиса со следова­нием нельзя.

С целью исключить парадоксы строгой импликации Льюиса немецкий математик и логик Ф. В. Аккерман (1896 -1962) по­строил свою систему модальной логики. Он ввел так называемую сильную импликацию, которая не тождественна строгой имплика­ции Льюиса, и модальные операторы Аккермана и Льюиса также не являются тождественными. Аккерман все логические терми­ны и модальные операторы определяет через сильную импликацию так: NA равносильно →?, МА равносильно . Здесь А - любая правильно построенная формула системы Аккермана; N- оператор необходимости; М- оператор возможности; -от­рицание A; → обозначает сильную импликацию; -логическая постоянная, обозначающая “абсурдно”. Эта постоянная в свою очередь определяется так: А& , где & обозначает конъюнк­цию. И последняя формула читается так: из противоречия, т. е. А и не-А, следует абсурд. В системе Аккермана не выводятся фор­мулы, структурно подобные парадоксам материальной или строгой импликации.

Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные сис­темы Лукасевича являются конечнозначными: одна - трехзначная (1920), другая - четырехзначная (1953). В четырехзначной системе Лукасевича1 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида L (где L обозначает не­обходимость, а - любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модальный оператор “необходимо” упраздняется. Лукасевич пишет: “Лю­бое аподиктическое предложение должно быть отброшено”2. Сам Лукасевич считал это достоинством своей системы, а понятие “необходимость” - псевдопонятием. С такой точкой зрения, ко­нечно, согласиться нельзя.

Интерпретации модальных логик различны. Известный авст­рийский философ и логик Р. Карнап (1891-1970) пытался ин­терпретировать модальные понятия (операторы) с помощью так называемой теории “возможных миров”, в которой допускается наличие множества “миров”, один из которых -действительный, реальный мир, а остальные - возможные миры. Необходимым объ­является то, что существует во всех мирах, возможным - то, что существует хотя бы в одном.

Р. Карнап в 1946 г., используя понятие “описание состояния”, предложил интерпретацию модальных операторов, в основе кото­рой лежала идея различия возможного и действительного мира.

В ином направлении шел финский логик Я. Хинтикка. Крити­чески переосмыслив введенное Карнапом понятие “описание состояния”, он разработал технику “модальных множеств”, т. е. миров (1957), - оригинальную семантическую концепцию возмо­жных миров. Разработка семантики возможных миров для мо­дальных логик продолжается.

Разнообразными проблемами модальной логики занимается американский логик Р. Фейс'.

В настоящее время разработаны многие виды модальностей, ко­торые отражены в таблице, помещенной на с. 97 данного учебника.

Теорией модальных логик и построением новых модальных логических систем активно занимаются логики А. А. Ивин, Я. А. Слинин, Б. С. Чендов,0. Ф. Серебряников, В. Т. Павлов и др.

 

Положительные логики

Положительные логики (сокращенно - ПЛ) - это логики, по­строенные без операции отрицания. Их можно разделить на два вида:

1) ПЛ в широком смысле слова, или квазипозитивные логи­ки. Они построены без операции отрицания, но отрицание мо­жет быть выражено средствами их логических систем;

2) ПЛ в узком смысле слова. Они построены без операции от­рицания, и отрицание не может быть выражено в их системах.

Можно предложить классификацию ПЛ и по другому основа­нию: числу логических операций, на котором построена ПЛ.

Квазипозитивными логиками, построенными на одной опе­рации, являются логика, построенная на операции “штрих Шеффера” (антиконъюнкция), и логика, основанная на операции ан­тидизъюнкции. Квазипозитивная логика, построенная на опе­рации антидизъюнкции, которая соответствует сложному союзу “ни..., ни...” и обозначается а b (“ни а, ни b), таблично опре­делена так:

а b a b
И И Л
И Л Л
Л И Л
Л Л И

Ряд квазипозитивных логик основан на двух операциях. ПЛ в узком смысле, основанными на одной операции, являются импликативная логика, основанная на операции импликации, и логика, построенная на операции эквиваленции. Ряд ПЛ осно­ван на двух операциях:

а) на импликации и конъюнкции;

б) на дизъюнкции и конъюнкции;

в) на импликации и дизъюнкции.

ПЛ (в узком смысле) является подсистемой (частичной си­стемой) более сильных логик - интуиционистской и классиче­ской. Все утверждения ПЛ имеют силу как в интуиционистской логике, так и в классической логике. Внутри самих ПЛ также имеются различные по силе системы. Так, импликативная логи­ка, включающая две аксиомы, слабее, чем ПЛ, включающая, кроме этих двух, аксиомы, характеризующие конъюнкцию и дизъюнкцию. Аксиоматическое построение подтверждает это со­отношение: самой сильной является классическая логика, слабее интуиционистская, еще слабее ПЛ.

Общим для ПЛ в широком и узком смыслах является то, что среди логических констант этих систем нет операции отрицания.

Отличия этих систем следующие:

1) в квазипозитивных логиках операция отрицания выразима средствами этой логики, а в ПЛ в узком смысле операция отрица­ния не выразима;

2) квазипозитивные логики являются моделями классической логики, т.е. они эквивалентны классической логике высказыва­ний, а ПЛ в узком смысле не эквиваленты классической логике, являясь ее подсистемами (частичными системами), следователь­но, они слабее классической логики высказываний.

Роль ПЛ в искусственных языках весьма значительна. Особен­но это касается конструктивной логики А. А. Маркова, которая строится на иерархии языков. В алфавите языка Я1, нет отрица­ния, и в нем нельзя выразить отрицание, ибо нет импликации. Марковым был построен язык Я1, который хотя и узок, но приспо­соблен для описания работы нормальных алгоритмов. Этот язык пригоден для выражения некоторых отношений между словами, встречающимися в чистой семиотике и в теории алгоритмов. С помощью языка Я1, (языка без отрицания) можно дать описа­ние работы различных алгоритмов - и в этом состоит важное значение языка без операции отрицания.

Логическая система без операции логического отрицания нахо­дит свое применение при построении машинных программ. Но если взять искусственные языки - такие, как ФОРТРАН или КОБОЛ, которые позволяют воспользоваться высокоэффективным спосо­бом программирования, то в их состав, кроме логического сложе­ния и логического умножения, входит и логическое отрицание, со­ответствующее частице “не” и обозначаемое знаком “ u ”. Все инструкции о том, как произвести сборку замков, мебели, по ис­пользованию машин, инструментов, технических приборов и т. п. основаны на содержательном (не формализованном) использова­нии ПЛ.

 

Паранепротиворечивая логика

Эта логика представляет одно из направлений современной неклассической математической логики. Объективной основой появления паранепротиворечивых логик является стремление отразить средствами логики специфику мышления человека о переходных состояниях, которые наряду с устойчивостью и от­носительным покоем наблюдаются в природе, обществе и поз­нании. В природе и обществе происходят изменения, предме­ты и их свойства переходят в свою противоположность, поэтому нередки переходные состояния, промежуточные ситуации, не­определенность в познании, переход от незнания или неполно­го знания к более полному и точному. Действие законов дву­значной логики - закона исключенного третьего и закона непротиворечия - в этих ситуациях ограничено или вообще исключено. На необщезначимость этих законов указывал еще Ари­стотель. Говоря о будущих единичных случайных событиях, по Аристотелю, нельзя считать суждение истинным или ложным, оно неопределенно.

Закон непротиворечия утверждает, что два противоположных суждения не могут быть истинными в одно и то же время и в одном и том же отношении. Но в разное время они могут быть оба истинными. Аристотель писал: “Все изменяющееся необхо­димо должно быть делимым... необходимо, чтобы часть изменя­ющегося предмета находилась в одном (состоянии), часть - в дру­гом, так как невозможно сразу быть в обоих или ни в одном”'.

Вследствие неопределенности интервалов и неопределенности состояний изменяющегося предмета предполагается временная ин­тервальная Паранепротиворечивая семантика, допускающая истин­ность как высказывания А, так и не-А. Кроме временных интер­валов с переходными состояниями, наше мышление имеет дело с так называемыми нечеткими понятиями (нежесткими, расплывча­тыми, размытыми –fuzzy), отражающими нежесткие множества, концепция которых предложена в 1965 г. американским математи­ком Л. Заде2. Все это обусловило необходимость и возможность появления паранепротиворечивых логик (paraconsistent logics) -логических исчислений, которые могут лежать в основе противо­речивых формальных теорий. Противоречивые данные возника­ют на судебных заседаниях, в дискуссиях, полемике, при поста­новке диагноза болезни, в научных теориях (прежних и новых), в ситуациях, связанных с решением нравственных проблем, в дру­гих сферах интеллектуальной деятельности. В связи с этим встала проблема создания информационной системы, работающей с про­тиворечивыми данными.

Предшественниками паранепротиворечивой логики как нового вида неклассичесиой формальной логики явились логики Н. А. Ва­сильева и Я. Лукасевича. Как новый вид математической логики паранепротиворечивая логика разрабатывалась в работах польско­го логика Ст. Яськовского (1948) и бразильского математика Нью­тона да Коста (начиная с 1958 г.) История паранепротиворечивой логики изложена бразильским логиком А. И. Аррудой в работе “Об­зор паранепротиворечивой логики. Математическая логика в Ла­тинской Америке”'.

В паранепротиворечивых системах принцип (закон) непротиво­речия лишен всеобщей значимости. Логике не присущи ни единст­во, ни абсолютность - эту мысль мы встречаем у многих совре­менных логиков, в том числе у Н. да Косты. В статье, написанной специально для журнала “Философские науки”, “Философское значение паранепротиворечивой логики” Н. да Коста пишет: “До­пустим, что имеющийся у нас язык дедуктивной теории Т содер­жит в себе символ отрицания. Т называют противоречивой (in­consistent) теорией, если и только если в Т имеются две теоремы, одна из которых есть отрицание другой; в противоположном слу­чае Т считается непротиворечивой (consistent). Т считают триви­альной, если и только если все формулы (или все высказывания [sentences]) языка Т являются также теоремами Т; в противном случае мы называем Т нетривиальной... Система логики паранепротиворечива, если она может быть использована как логика, лежащая в основе противоречивых, но нетривиальных теорий”2. Н. да Коста полагает, что вместо стандартных теорий множеств могут быть использованы паранепротиворечивые теории мно­жеств. Система паранепротиворечивой логики в общем случае должна удовлетворять следующим условиям:

1) из двух противоречащих формул А и u А в общем случае нельзя вывести произвольную формулу В;

2) дедуктивные средства классической логики должны быть максимально сохранены, поскольку они - основа всех обычных рассуждений. В первую очередь должен быть сохранен modus poaens, т. е. рассуждение по формуле ((а > b)^ а) > b.

Паранепротиворечивая логика связана со многими видами не­классических логик: с модальной логикой (системой S5 К. И. Льюиса), с многозначными логиками, с релевантной логи­кой, где тоже не принимается принцип: из противоречия следует все, что угодно'. Исследование многозначных логик показало, что закон непротиворечия, т. е. формула , не является тавтологи­ей в следующих системах: трехзначных логиках - Я. Лукасевича, Г. Рейхенбаха (для циклического и диаметрального отрицаний), Р. П. Гудстейна, Д. Бочвара (для внутреннего отрицания); т-значной логике Э. Л. Поста. Автор этого учебника исследовала 13 фор­мализованных логических систем с 17 имеющимися в них вида­ми отрицания и установила, что для 10 видов закон непротиворечия является тавтологией (доказуемой формулой), а для остальных 7 нет. Это обусловлено тем, что, кроме значений истинности - “ис­тина” и “ложь”, в многозначных логиках имеется значение “неопределенно”. Но в классической, конструктивных и интуи­ционистской логиках от закона непротиворечия нельзя отказать­ся, ибо в этих логиках отражены жесткие ситуации “или - или” (“истина - ложь”), конструктивный процесс присутствует или его нет, одновременно того и другого не бывает. Поэтому классичес­кая, интуиционистская, конструктивная и ряд других логик не го­дятся в качестве логик, которые могут быть основанием противо­речивых, но нетривиальных теорий. Положительные логики также для этого не годятся, ибо в них нет операции отрицания. Некото­рое современные логики (например, немецкий логик К. Вессель) не признают паранепротиворечивых логик. Построением паранепротиворечивых логических систем занимаются, од­нако, отечественные логики А. С. Карпенко, А. Т. Ишмурагов и др.

Интересны и оригинальны статьи американского математи­ка Н. Белнапа “Как нужно рассуждать компьютеру” (1976) и “Об одной полезной четырехзначной логике” (1976), посвященные формализации общения с информационными системами, в ко­торых содержится противоречивая информация. Белнап постро­ил четырехзначную логику, значениями истинности которой яв­ляются следующие: Т - “говорит только Истину”; F - “говорит только Ложь”; None - “Не говорит ни Истины, ни Лжи”; Both -“говорит и Истину, и Ложь”'. Н. Белнап отмечает, что входные данные поступают в компьютер из нескольких независимых источников, и в таких условиях проявляется типичная особен­ность информационной ситуации - угроза противоречивости информации. Что в таком случае должен делать компьютер, осо­бенно если в системе содержится необнаруженное противоре­чие? Свою четырехзначную логику Белнап и предлагает в каче­стве практического руководства в рассуждениях2.

Итак, паранепротиворечивые логики демонстрируют возмож­ность наличия очень сильных противоречивых, но нетривиаль­ных (т. е. паранепротиворечивых) теорий.

 

Заключение

Цель познания в науке и повседневной жизни - получение ис­тинных знаний и полноценное использование их на практике. Зна­ние формальной логики и диалектики помогает предвидеть собы­тия и лучшим способом планировать деятельность, максимально предусматривать возможные последствия, выдвигать различные гипотезы, эффективнее обучать и самим обучаться, видеть “логику вещей”, т. е. объективную диалектику, умело вести дискуссии и полемику.

Изучение логики желательно продолжить, прослушав ряд спец­курсов, самостоятельно изучив дополнительную литературу. Эти фор­мы работы помогут студентам, изучившим основной курс фор­мальной логики (как классической, так и многочисленных направлений неклассических логик, изложенных в последней главе), стать преподавателем логики в средней школе, лицее, гимназии и ином учебном заведении. Можно предвидеть, что потребность в таких преподавателях будет возрастать в связи с введением курса логики в средних учебных заведениях.

В статье доктора философских наук В. А. Светлова “Нужна ли логика будущему учителю?” (вопрос, вынесенный в заголовок, носит в общем риторический характер) сформулированы некото­рые перспективы дальнейшего изучения логики студентами пед­вузов. В. А. Светлов пишет: “Что же может дать логика для под­готовки учителя? При самом умеренном ее изучении студент педагогического вуза за один-два семестра мог бы дополнитель­но к стандартному курсу освоить теоретически и научиться при­менять практически (по выбору): логику научного исследования, логические основы семантики и семиотики, логику научно-педа­гогической работы, логику принятия решения (в условиях опре­деленности, неопределенности и риска), логику спора, логику об­щения (межличностных отношений), логику структурного анализа сказок, мифов, художественных текстов, логику кон­фликтов (межличностных, политических, военных)”'.

Помимо этих направлений будущим преподавателям логики можно посоветовать изучить материалы по методике препода­вания логики и по истории логики.

Интересным, перспективным направлением является анализ уже созданных и разработка новых программ для ЭВМ по курсу формальной логики - как традиционной (с элементами символи­ческой логики), так и символической логики2.

Широкое применение логических знаний необходимо и при разработке обучающих программ для ЭВМ по различным школь­ным учебным дисциплинам (опыт составления разнообразных программ по математике, русскому языку, истории, иностран­ным языкам, географии и другим предметам имеется, и его пред­стоит изучить).

Конкретное применение знаний формальной логики учителю потребуется и в вузе, и в школе при работе с понятиями и осуще­ствлении логических операций с ними (определение, деление по­нятий, классификация, обобщение и ограничение). Знание темы “Суждение” поможет учителю и учащимся четко выявлять логи­ческую структуру простых и сложных суждений, правильно про­изводить отрицания суждений, работать с модальными суждения­ми. Мы надеемся, что запись сложных суждений с помощью логических союзов, которая очень нравится учащимся 3-7 и стар­ших классов (о чем свидетельствуют многочисленные экспери­менты со школьниками, изучавшими элементы логики под моим и под руководством студентов МПГУ им В. И. Ленина) оживит урок по любому школьному предмету.

Тема“Умозаключение” и ее использование отражены в дан­ной книге подробно; в ней выделены два отдельных параграфа:

“Дедукция и индукция в учебном процессе” и “Умозаключение по аналогии и его виды”. Желательно в процессе преподавания любого предмета показать структуру многих форм умозаключе­ний, при этом предложить учащимся поискать в художественной литературе примеры на эти виды умозаключений. Например, в рассказе Агаты Кристи “Двойная улика” месье Пуаро расследу­ет похищение ряда драгоценностей из коллекции Хардмана (жем­чужины, рубины, изумрудное ожерелье). Подозрение могло ка­саться четверых. Вот их диалог, в котором сформулировано умо­заключение:

“- Мистер Хардман, кого Вы сами подозреваете из этой чет­верки?

- О, месье Пуаро, что за вопрос! Ведь я Вам уже сказал, что это мои друзья. Я ни одного из них не подозреваю или, если Вам угодно, - всех в одинаковой мере.

- Не могу с Вами согласиться. Я уверен, что Вы кого-то из них подозреваете. Это не графиня Росакова. Это не мистер Пар­кер. Кто же тогда: леди Ранкорн или мистер Джонстон?”'.

Структура этого умозаключения такая:

(a b c d; ):(с d)

Это относительно новая разновидность структуры разделитель­но-категорического умозаключения.

Вообще в художественной литературе можно найти богатей­шее собрание самых интересных иллюстраций по курсу логи­ки; следует к такой работе подключить и студентов, и учащихся школы. Это одна из заманчивых перспектив в методике изуче­ния логики, свидетельствующая о тесном взаимодействии язы­ка и мышления.

Значительный интерес представляет раздел логики, посвящен­ный спору, дискуссиям, разоблачению различных недопустимых уловок, используемых в полемике. В исследование этой темы оригинальный вклад внес русский логик С. И. Поварнин (1870-1952)2.

После изучения курса логики рекомендуем проверить свои зна­ния. Для этого можно ответить на предлагаемые ниже задания тестов.

 

Рекомендуемая литература

I. Учебная литература

Гетманова А. Д. Логика. М., 1986.

Гетманова А. Д. Учебник по логике. Серия: Российский ли­цей. М.., 1994.

Гетманова Л. Д., Панов М. И., Уемов А. И., Никифоров А. Л.,

Яшин Б. Л. Логика: Учебное пособие для учащихся 10-11 клас­сов. М., 1995.

Горский Д. П. Логика. М., 1963.

Горский Д. П., Ивин А. А., Никифоров А. Л., Краткий словарь по логике. М., 1991.

Ивлев Ю. В. Логика. М., 1997.

Кириллов В. И., Старченко А. А. Логика. М., 1995.

Мельников А.Н. Сборник задач по логике. Киев, 1990.

Пойа Д. Математика и правдоподобные рассуждения. М., 1975.

Сборник упражнений по логике. Минск, 1995.

Светлое В. А. Практическая логика. С.-Петербург. 1995.

Свинцов В. И. Логика. М., 1987.

Теория и практика полемики: Методическое пособие. Томск, 1989.

Уемов А. И. Основы практической логики. Одесса. 1997.

Упражнения по логике. М., 1990.

Яшин Б. Л. Сборник задач и упражнений по логике. М., 1996.

II. Популярная литература

Айзенк Г. Ю. Проверьте свои интеллектуальные способности //Пер. с англ. Рига, 1992.

Гарднер М. А. А ну-ка, догадайся! // Пер. с англ. М., 1984.

Жоль К. К. Логика в лицах и символах: Научно- популярная книга. М., 1993.

Ивин А. А. Искусство правильно мыслить: Книга для учащих­ся. М., 1990.

Ивин А. А. Строгий мир логики. Серия: Библиотека детской энциклопедии “Ученые - школьнику”. М., 1988.

Игры для интенсивного обучения. М., 1991.

КасабуцкийН. И., Скобелев Г. Н. и др. Давайте поиграем. М., 1991.

Кэрролл Л. История с узелками. М., 1973.

Кэрролл Л. Приключения Алисы в Стране Чудес. Сквозь Зер­кало и что там увидела Алиса, или Алиса в Зазеркалье. М., 1979,

Кэрролл Л. Логическая игра. М., 1991.

Месъков В. С., Карпинская О. Ю. и др. Логика: Наука и искус­ство. М.,1993.

Нагибин Ф. Ф., Канин Ё. С. Математическая шкатулка: Посо­бие для учащихся. М., 1984.

Никольская И. Л., Семенов Е. Е. Учимся рассуждать и доказы­вать: Книга для учащихся 6-10 классов средней школы. М., 1989.

Петров Ю. А. Азбука логичного мышления. М., 1991.

Смаллиан Р. Как же называется эта книга? М., 1981.

Смаллиан Р. Принцесса или тигр? М., 1985.

Смаллиан Р. Алиса в Стране Смекалки. М., 1987.

Сопер П. Основы искусства речи // Пер. с англ. М., 1992.

Развивающие игры для детей: Справочник. М., 1990.

III. Литература по педагогическим приложениям логики

Богданова О. Ю. Развитие мышления старшеклассников на Уроках литературы. М., 1979.

Бирюков Б. В. Жар холодных чисел и пафос бесстрастной ло­гики. Формализация мышления от античных времен до эпохи кибернетики. М., 1985.

Дзыбенко О. Г. Вопросы формирования дискуссионной речи. Тернополь, 1992.

Гнеденко Б. В. Формирование мировоззрения учащихся в процессе обучения математике. М., 1982.

Кирюшкин В. А. Логические упражнения в первом классе в системе занятий по русскому языку//Ученые записки Красноярского пединститута. Красноярск, 1961. Т. 19.

Конобеевский Н. П., Кирюшкин В. А. Методическое руководство к альбому рисунков для логических упражнений на уроках русского языка во II классе. М., 1970.

Лернер И. Я. Развитие мышления учащихся в процессе обучения истории. М., 1982.

Соболевский Р. Ф. Логические и математические игры. Минск, 1977.

Сухомлинский В. А. О воспитании. М., 1975.

Тигранова Л. И. Развитие логического мышления детей с недостатками слуха. М., 1991.

Усова А. Ф. Формирование у школьников научных понятий в процессе обучения. М., 1986.

Ушинский К. Д. Первые уроки логики // Собр. соч. М.- Л., 1948. Т. 4. С. 554-578.

 







Последнее изменение этой страницы: 2016-12-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.208.22.127 (0.04 с.)