Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сложное суждение и его виды.Содержание книги
Поиск на нашем сайте
Исчисление высказываний Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие:
Буквы а, b - переменные, обозначающие суждения; буква “И” обозначает истину, а “Л” - ложь. Таблицу истинности для конъюнкции (а U b) можно разъяснить на следующем примере. Учителю дали короткую характеристику, состоящую из двух простых суждений: “Он является хорошим педагогом (а) и учится заочно (b)”. Она будет истинна в том и только в том случае, если суждения а и b оба истинны. Это и отражено в первой строке. Если же о ложно, или b ложно, или и а, и b ложны, то вся конъюнкция обращается в ложь, т. е. учителю была дана ложная характеристика. Суждение “Увеличение рентабельности достигается или путем повышения производительности труда (а), или путем снижени себестоимости продукции (b)” - пример нестрогой дизъюнкции. Дизъюнкция называется нестрогой, если члены дизъюнкции не исключают друг друга. Высказывание или формула с такой дизъюнкцией истинна в том случае, когда истинно хотя бы одно из двух суждений (первые три строки таблицы), и ложна, когда оба суждения ложны. Строгая дизъюнкция (а u b) - та, в которой члены дизъюнкции исключают друг друга. Ее можно разъяснить на примере: “Я поеду на Юг на поезде (а) или полечу туда на самолете (b)”. Я не могу одновременно ехать на поезде и лететь на самолете. Строгая дизъюнкция истинна тогда, когда лишь одно из двух простых суждений истинно, и только одно. Таблицу для импликации (а > b) можно разъяснить на таком примере: “Если по проводнику пропустить электрический ток (а), то проводник нагреется (b)1. Импликация истинна всегда, кроме одного случая, когда первое суждение истинно, а второе - ложно. Действительно, не может быть, чтобы по проводнику пропустили электрический ток, т. е. суждение (а) было истинным, а проводник не нагрелся, т. е. чтобы суждение (b) было ложным. В таблице эквиваленция (a? b) характеризуется так: а? b истинно в тех и только в тех случаях, когда и а, и b либо оба истинны, либо оба ложны. Отрицание суждения а (т. е. a) характеризуется так: если а истинно, то его отрицание ложно, и если а - ложно, то. a - истинно. Если в формулу входят три переменные, то таблица истинности для этой формулы, включающая все возможные комбинации истинности или ложности ее переменных, будет состоять из 23 = 8 строк; при четырех переменных в таблице будет 24 = 16 строк; при пяти переменных в таблице имеем 25 = 32 строки; при n переменных 2n строк. Алгоритм распределения значений И и Л для переменных (например, для четырех переменных а, b, с, d) таков: (см. таблицу на стр. 81); Имеем 24 = 16 строк. В столбце для а сначала пишем 8 раз “И” и 8 раз “Л”. В столбце для b сначала пишем 4 раза “И” и 4 раза “Л”, затем повторяем и т. д. Тождественно-истинной формулой называется формула, которая при любых комбинациях значений для входящих в нее переменных принимает значение “истина”. Тождественно-ложная формула -та, которая (соответственно) принимает только значение “ложь”. Выполнимая формула может принимать значения как “истина”, так и “ложь”.
Так как в последней колонке имеем одни истины, то формула является тождественно-истинной, или законом логики (или, как иногда ее называют, тавтологией).
Итак, конъюнкция (а ^ b) истинна тогда, когда оба простых суждения истинны. Строгая дизъюнкция (а u b ) истинна тогда, когда только одно простое суждение истинно. Нестрогая дизъюнкция (а v b ) истинна тогда, когда хотя бы одно простое суждение истинно. Импликация (а > b ) истинна во всех случаях, кроме одного: когда а - истнно, b - ложно. Эквиваленция (а b) истинна тогда, когда оба суждения истинны или оба ложны. Отрицание () истины дает ложь, и наоборот. Способы отрицания суждений Два суждения называются отрицающими или противоречащими друг другу, если одно из них истинно, а другое ложно (т. е. не могут быть одновременно истинными и одновременно ложными). Отрицающим являются следующие пары суждений:
1. А - О. “Все S суть Р” и “Некоторые Sне суть Р”. 2. Е -1. “Ни одно S не суть Р” и “Некоторое S суть Р”. 3. “Это S суть Р” и “Это S не суть Р”. Oперацию отрицания в виде образования нового суждения из данного следует отличать от отрицания, входящего в состав отрицательных суждений. Существует два вида отрицания: внутреннее и внешнее. Внутреннее - указывает на несоответствие предиката субъекту (связка выражена словами: “не суть”, “не есть”, “не является”). Например: “Некоторые люди не имеют высшего образования”. Внешнее отрицание означает отрицание всего суждения. Например: “Неверно, что в Москве протекает река Нева”. Отрицание сложных суждении Чтобы получить отрицание сложных суждений, имеющих в своем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций друг на друга (т. е. конъюнкцию на дизъюнкцию и наоборот) и над буквами, выражающими элементарные высказывания, написать знак отрицания, а если он уже есть, то отбросить его. Противоречащее суждение будет:
Оно читается так: “У меня будет свободное время, но я не буду вязать и не буду смотреть телевизор”. Исчисление высказываний I. Символы исчисления высказываний состоят из знаков трех категорий: 1. а, b, с,d, е,f... и те же буквы с индексами а1,а2,... Эти символы называются переменными высказываниями, или пропозициональными переменными. С помощью этих символов записываются повествовательные предложения, выражающие суждения (высказывания). 2. Символы, обозначающие логические термины:—, ^, , u, →?. Эти символы выражают следующие логические операции (логические связки): отрицание (“не”), конъюнкция (“и”), нестрогая дизъюнкция (нестрогое “или”), строгая дизъюнкция (строгое “или”), импликация (“если..., то”) эквиваленция (“если и только если, то...”). Подробнее об этих логических терминах см. на с. 26-27 этого учебника. 3. Скобки: (). Иных символов, кроме указанных, исчисление высказываний не имеет. II. Определение формулы (или правильно построенной формулы - ППФ). 1. Переменное высказывание есть формула (а, b, с...). 2. Если А и В есть ППФ, то , (А ^ В), (А В), (A u В), (А =B) и (А → В) есть ППФ. (Здесь буквы А, В, С... не являются символами исчисления высказываний. Они представляют собой только условные сокращенные обозначения формул). Ничто иное не является формулой (ППФ). Так, не являются формулами: (а ^ b; а-b; ^ а; а →b; а ^ b; а b. Первое из этих слов содержит незакрытую скобку. Второе и третье слова никак не могут быть построены на основании пункта 2. Четвертое слово не является формулой потому, что хотя а и b - формулы, но соединение формул связкой → всегда сопровождается заключением в скобки; то же самое можно сказать и о двух последних словах. Существуют правила опускания скобок. При этом исходят из того, что связка связывает сильнее, чем все остальные; связка ^ сильнее, чем →. В силу этих правил формулу (а ^ b) c будем писать в виде а ^ b v с. Формулу (а b) → (с ^ d ) будем писать в виде а v b→с ^ d. Однако не всякая формула может быть записана без употребления скобок. Например, в формулах а → (b → с), а ^ (b→с) исключение скобок невозможно. Для моделирования с помощью ЭВМ текстов естественного языка, включающих отрицание, возможно записать некоторые выражения на языке алгебры логики (А, В, С, D - высказывания, “+” - знак нестрогой дизъюнкции, “•” - знак конъюнкции, “-” -знак отрицания.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-26; просмотров: 388; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.254.229 (0.007 с.) |