Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Уравнения динамики системы материальных точек и твёрдого тела.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Предварительные замечания об общих теоремах динамики. Задача об интегрировании дифференциальных уравнений движения материальной точки, представляющая даже в случае одной точки некоторые трудности, становится подчас непосильной, когда приходится иметь дело с движением системы материальных точек. Силы, приложенные к отдельным точкам системы, могут зависеть от положения и движения остальных точек системы, так что правые части дифференциальных уравнений, написанных для каждой точки в отдельности, будут содержать время, координаты и проекции скорости всех точексистемы. В результате вопрос сводится к интегрированию системыдифференциальных уравнений. Но иногда оказывается достаточным определить изменение некоторых суммарных мер движения системы в целом (количества движения, момента количества движения, кинетической энергии) в зависимости от суммарных мер действия сил (главный вектор и главный момент приложенных сил, работа сил, потенциальная энергия). Такого рода соотношения между изменениями во времени суммарных мер движения системы материальных точек и суммарными мерами действия приложенных к точкам совокупности сил выражают общие теоремы динамики системы материальных точек, применяемые как для отдельных точек и их систем, так и для сплошных сред. К числу общих теорем динамики относятся: теорема об изменении количества движения с ее модификациями - теоремой импульсов и теоремой о движении центра масс, теорема об изменении момента количества движения (кинетического момента), а также теорема об изменении кинетической энергии. В основе вывода первых двух общих теорем динамики- количества движения и момента количества движения - лежит идея выделения из всех сил, приложенных к системе, внутреннихсил взаимодействия между материальными точками системы. Внутренние силы в своей совокупности не могут влиять на такие суммарные меры движения, как главный вектор и главный момент количества движения точек системы. Только внешние силы, действующие на точки системы со стороны внешних тел, не принадлежащих к рассматриваемой системе, могут изменять главный вектор и главный момент количества движения системы. В использовании этого свойства внутренних сил, представляющего собой одно из важнейших следствий третьего закона Ньютона, заключается главное значение двух первых общих теорем динамики. Рассмотрим систему, состоящую из n точек. На каждую из них действуют силы со стороны других точек (рис. 52), причём и . На каждую точку системы действует равнодействующая , но сумма всех равно действующих , где - главный вектор всех внутренних сил. Нетрудно увидеть, что и сумма моментов всех внутренних сил, независимо от выбора центра, также будет равен нулю. Итак, главный вектор и главный момент всех внутренних сил, действующих на систему точек, равны нулю. Теорема об изменении кинетической энергии устанавливает связь между изменением основной меры движения системы материальных точек- кинетической энергии и мерой действия сил на протяжении путей движения точек системы - работой сил. Таким образом, в круг вопросов механики вводится понятие энергии. Значение этого понятия состоит в том, что им определяется единая физическая величина, проявляющаяся в различных физических явлениях и, таким образом, связывающая их между собой. Понятие энергии объединяет механику с термодинамикой, с учением об электрических явлениях и т. п. Преобразование механической энергии в другие формы энергии и обратное преобразование этих форм в механическую энергию представляет важную задачу современной техники. В отличие от изменения количества движения и момента количества движения изменение кинетической энергии материальной системы зависит от работы как внешних, так и внутренних сил. Однако и в этом случае выделение класса внутренних сил оказывается полезным, так как, например, в случае движения абсолютно твердого тела или системы абсолютно твердых тел работа внутренних сил равна нулю, а в случае сплошной среды она позволяет судить о потерях механической энергии за счет внутреннего трения.
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 427; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.54.147 (0.009 с.) |