Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ускорений точек плоской фигуры

Поиск

Ускорения какой-либо точки плоской фигуры при плоском движении равно векторной сумме ускорения полюса и ускорения этой точки во вращательном движении плоской фигуры вокруг полюса.

(3.44)

Рис. 3.25
где – ускорение точки А, принятой за полюс;

– ускорение т. В во вращательном движении вокруг полюса А;

– соответственно касательная и нормальная составляющие
(рис. 3.25). Причем

(3.45)

где a – угол наклона относительного ускорения к отрезку АВ.

В случаях, когда w и e известны, формула (3.44) непосредственно используется для определения ускорений точек плоской фигуры. Однако во многих случаях зависимость угловой скорости от времени неизвестно, поэтому и угловое ускорение неизвестно. Кроме того, линия действия вектора ускорения одной из точек плоской фигуры известно. В этих случаях задача решается проектированием выражения (3.44) на соответствующим образом выбранные оси. Третий подход к определению ускорений точек плоской фигуры основан на использовании мгновенного центра ускорений (МЦУ).

В каждый момент времени движения плоской фигуры в своей плоскости, если w и e не равны нулю одновременно, имеется единственная точка этой фигуры, ускорение которой равно нулю. Эту точку называют мгновенным центром ускорений. МЦУ лежит на прямой, проведенной под углом a к ускорению точки, выбранной в качестве полюса, на расстоянии от которого

(3.46)

При этом угол a надо отложить от ускорения полюса в направлении дуговой стрелки углового ускорения e (рис. 3.26). В различные моменты времени МЦУ лежит в разных точках плоской фигуры. В общем случае МЦУ не совпадает с МЦС. При определении ускорений точек плоской фигуры МЦУ используется в качестве полюса. Тогда по формуле (3.44)

(3.47)

так как и следовательно

(4.48)

Ускорение направлено под углом a к отрезку Bq, соединяющему точку В с МЦУ в сторону дуговой стрелки углового ускорения e (рис. 3.26). Для точки С аналогично.

(3.49)

Из формулы (3.48), (3.49) имеем

(3.50)

Таким образом, ускорение точек фигуры при плоском движении можно определить так же как при чистом её вращении вокруг МЦУ.

Определение МЦУ.

1 В общем случае, когда w и e известны и не равны нулю, для угла a имеем

МЦУ лежит на пересечении прямых линий, проведенных к ускорениям точек фигуры под одним и тем же углом a, причем угол a нужно откладывать от ускорений точек в направлении дуговой стрелки углового ускорения (рис. 3.26).

 

Рис. 3.26
Рис. 3.27
2 В случае w¹0, e = 0, и, следовательно, a = 0. МЦУ лежит в точке пересечения прямых линий, по которым направлены ускорения точек плоской фигуры (рис. 3.27)

3 В случае w = 0, e ¹ 0, МЦУ лежит в точке пересечения перпендикуляров, восстановленных в точках А, В, С к соответствующим векторам ускорений (рис. 3.28).

 

 
 
Рис. 3.28

 


Определение углового ускорения при плоском движении

1 Если известен угол поворота или угловая скорость в зависимости от времени, то угловое ускорение определяется по известной формуле

(3.51)

2 Если в указанной выше формуле , – расстояние от точки А плоской фигуры до МЦС, величина постоянная, то угловое ускорение определяется путем дифференцирования угловой скорости по времени

(3.52)

где – касательно ускорение точки А.

3 Иногда угловое ускорение удается найти путем проектирования соотношения типа (3.44) на соответствующим образом выбранные оси координат. При этом ускорение т. А, выбранной в качестве полюса, известно, известна также линия действия ускорения другой т. В фигуры. Из таким образом полученной системы уравнений определяется касательное ускорение Тогда e вычисляется по известной формуле .

Задача КЗ

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна В или Е (рис. К3.0 – К3.7) или из стержней 1, 2, 3 и ползунов В и E (рис. К3.8, К3.9), соединенных друг с другом и с неподвижными опорами O1, О2 шарнирами; точка D находится в середине стержня АВ. Длины стержней равны соответственно l1 = 0,4 м, l2 = 1,2 м,
l3 = 1,4 м, l4 = 0,6 м. Положение механизма определяется углами a, b, g, j, q. Значения этих углов и других заданных величин указаны в табл. К3а (для рис. 0 – 4) или в табл. К3б (для рис. 5 – 9); при этом в табл. К3а w1 и w2 – величины постоянные.

 

 
 
Таблица К3а (к рис. К3.0 – К3.4)

 


 

 

 
 
Таблица К3б (к рис. К3.5 – К3.9)


 

 

 

 

       
 
Рис. К3.0
   
Рис. К3.1
 

 


 

 

       
 
Рис. К3.2
 
Рис. К3.3

 


 

Рис. К3.5
Рис. К3.4

 

 

 

       
 
Рис. К3.6
 
Рис. К3.7

 

 


 

       
 
Рис. К3.8
 
Рис. К3.9

 


 

Определить величины, указанные в таблицах в столбцах «Найти». Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол g на рис. 8 следует отложить от DB по ходу часовой стрелки, а на рис. 9 – против хода часовой стрелки и т.д.).

Построение чертежа начинать со стержня, направление которого определяется углом a; ползун с направляющими для большей наглядности изобразить так, как в примере К3 (см. рис. К3б).

Заданные угловую скорость и угловое ускорение считать направленными против часовой стрелки, а заданные скорость и ускорение a B – от точки В к b (на рис. 5 – 9).

Указания. Задача К3 – на исследование плоскопараллельного движения твердого тела. При ее решения для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.

При определении ускорений точек механизма исходить из векторного равенства где А – точка, ускорение которой или задано, или непосредственно определяется по условиям задачи (если точка А движется по дуге окружности, то ); В –точка, ускорение которой нужно определить (о случае, когда точка В тоже движется по дуге окружности, см. примечание в конце рассмотренного ниже примера К3).

 

Пример К3.

Механизм (рис. К3а) состоит из стержней 1, 2, 3, 4 и ползуна В, соединенных друг с другом и с неподвижными опорами O1 и О2 шарнирами.

Дано: a = 60°, b = 150°, g = 90°, j = 30°, q = 30°, AD = DB, l1 = 0,4 м, l2 = 1,2м, l3 = 1,4 м, w1 = 2 с–1, e1 = 7 с–2 (направления w1 и e1 против хода часовой стрелки).

Определить: vB, vE, w2, a B, e3.

Решение

1 Строим положение механизма в соответствии с заданными углами
(рис. К3б, на этом рисунке изображаем все векторы скоростей).

 

 

 

 
 
Рис. К3б

 

 


2 Определяем vB. Точка В принадлежит стержню АВ. Чтобы найти vB, надо знать скорость какой-нибудь другой точки этого стержня и направление По данным задачи, учитывая направление w1 можем определить численно

vA = w1× l 1 = 0,8 м/с; (1)

Направление найдем, учтя, что точка В принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно. Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня АВ) па прямую, соединяющую эти точки (прямая АВ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим

vB×cos 30° = vA×cos 60° и vB = 0,46 м/с (2)

3 Определяем Точка Е принадлежит стержню DE. Следовательно, по аналогии с предыдущим, чтобы определить надо сначала найти скорость точки D, принадлежащей одновременно стержню АВ. Для этого, зная строим мгновенный центр скоростей (МЦС) стержня АВ; это точка С3, лежащая на пересечении перпендикуляров к восставленных из точек А и В перпендикулярен стержень 1). По направлению вектора определяем направление поворота стержня АВ вокруг МЦС С3. Вектор перпендикулярен отрезку C3D, соединяющему точки D и С3, и направлен в сторону поворота. Величину vD найдем из пропорции

(3)

Чтобы вычислить C3D и С3В, заметим, что DAC3B – прямоугольный, так как острые углы в нем равны 30° и 60°, и что С3В = AB×sin 30° = AB×0,5 = BD. Тогда DBC3D является равносторонним и С3В = C3D. В результате равенство (3) дает

vD = vB = 0,46 м/с; (4)

Так как точка Е принадлежит одновременно стержню O2E, вращающемуся вокруг O2 ­, то Тогда, восставляя из точек Е и D перпендикуляры к скоростям , построим МЦС C2 стержня DE. По направлению вектора определяем направление поворота стержня DE вокруг центра С2. Вектор направлен в сторону поворота этого стержня. Из рис. К3б видно, что откуда С2E = С2D. Составив теперь пропорцию, найдем, что

vE = vD = 0,46 м/с. (5)

4 Определяем w2. Так как МЦС стержня 2 известен (точка С2) и
C2D = l2 /(2cos 30°) = 0,69 м, то

(6)

5 Определяем (рис. К3в, на котором изображаем все векторы ускорений). Точка В принадлежит стержню АВ. Чтобы найти , надо знать ускорение какой-нибудь другой точки стержня АВ и траекторию точки В. По данным задачи можем определить где численно

(7) (7)

 

Рис. К3в
Вектор направлен вдоль AO1, а – перпендикулярно АО1: изображаем эти векторы на чертеже (см. рис. К3в). Так как точка В одновременно принадлежит ползуну, то вектор параллелен направляющим ползуна. Изображаем вектор на чертеже, полагая, что он направлен в ту же сторону, что и . Для определения воспользуемся равенством

(8)

Изображаем на чертеже векторы (вдоль ВА от В к А (в любую сторону перпендикулярно ВА); численно . Найдя w3 с помощью построенного МЦС С3 стержня 3, получим

(9)

Таким образом, у величин, входящих в равенство (8), неизвестны только числовые значения а В и их можно найти, спроектировав обе части равенства (8) на какие-нибудь две оси.

Чтобы определить а В, спроектируем обе части равенства (8) на направление ВА (ось х), перпендикулярное неизвестному вектору Тогда получим

(10)

Подставив в равенство (10) числовые значения всех величин из (7) и (9), найдем, что

a B = 0,72 м/с2 (11)

Так как получилось a B > 0, то, следовательно, вектор направлен как показано на рис. К3в.

6 Определяем e3. Чтобы найти e3, сначала определим Для этого обе части равенства (8) спроектируем на направление, перпендикулярное АВ (ось у). Тогда получим

(12)

Подставив в равенство (12) числовые значения всех величии из (11) и (7), найдем, что Знак указывает, что направление противоположно показанному на рис. К3в. Теперь из равенства получим

Ответ: vB = 0,46 м/с; vE = 0,46 м/с; w2 = 0,67 с–1; a B = 0,72 м/с2, e3 = 2,50 с–2.

Примечание. Если точка В, ускорение которой определяется, движется не прямолинейно (например, как на рис. К3.0 – К3.4, где В движется по окружности радиуса О2В), то направление заранее неизвестно. В этом случае также следует представить двумя составляющими () и исходное уравнение (8) примет вид

(13)

При этом вектор (см., например, рис. К3.0) будет направлен вдоль BO2, а вектор перпендикулярно BO2 в любую сторону. Числовые значения и определяются так же, как в рассмотренном примере (в частности, по условиям задачи может быть или если точка А движется прямолинейно).

Значение также вычисляется по формуле где l – радиус окружности O2B, а vB определяется так же, как скорость любой другой точки механизма.

После этого в равенстве (13) остаются неизвестными только значения и и они, как и в рассмотренном примере, находятся проектированием обеих частей равенства (13) на две оси.

Найдя можем вычислить искомое ускорение Величина служит для нахождения eАВ (как в рассмотренном примере).

 

 

ДИНАМИКА

Динамика является важнейшим разделом теоретической механики, в котором изучается движение материальных тел в зависимости от действующих на них сил. В динамике на основании объективных законов и процессов устанавливаются количественные соотношения между мерами действия на материальные объекты и мерами их движения. Мерами действия между объектами являются силы, момент силы, импульс силы и работа силы, а мерами механического движения – количество движения, момент количества движения (кинетический момент) и кинетическая энергия.

 

Законы Ньютона – Галилея

В основе динамики лежат законы Ньютона – Галилея и принцип независимости действия сил. В соответствии с первым законом постулируется существование такой системы отсчета, в которой изолированная материальная точка движется равномерно и прямолинейно или покоится. Такая система координат называется инерциальной и является основной.

В соответствии со вторым законом Ньютона для свободной материальной точки можно записать:

(4.1)

Здесь – соответственно масса и ускорение точки, - действующая на неё сила. Если на точку действует несколько сил, то под - понимают их равнодействующую. Выражение (4.1) называется основным уравнением динамики.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 901; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.131.37.82 (0.008 с.)