Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дифференциальные уравнения движения материальной точки.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Проектируя уравнение (1) на координатные оси и учитывая зависимости задаваемых сил от координат, скоростей и времени, получим дифференциальные уравнения динамики точки. Так, для декартовых координат имеем: (3.2) Дифференциальные уравнения движения в цилиндрической системе координат будут иметь вид ; В заключение приведем дифференциальные уравнения динамики точки в проекциях на оси натурального триэдра; эти уравнения бывают особенно удобны в тех случаях, когда известна траектория движения точки. Проектируя уравнение (3.1) на касательную, главную нормаль и бинормаль к траектории, получаем , , Рассмотрим теперь на примере уравнений динамики точки в декартовых координатах (3.2) постановку и процесс решения задач динамики точки. Существуют две основные задачи динамики точки: прямая и обратная. Первая задача динамики (прямая) состоит в следующем: дано движение точки, обладающей массой , т. е. заданы функции (3.3) требуется найти силы, вызывающие это движение. Решение этой задачи не представляет затруднении. Согласно уравнениям (3.1) и (3.3) находим проекции для чего дважды дифференцируем заданные функции (3.3). , , (3.4) Выражения (3.4) представляют проекции равнодействующей всех сил, действующих на точку; часть сил (или часть проекций)могут быть известными, остальные (но не более трёх проекций) найдутся из уравнений (3.4). Эту задачу можноформально привести к решению задачи статики, если переписать уравнение (3.1) в виде Здесь - сила инерции точки, проекции которой на оси х, у, z равны выражениям (3.3) с противоположными знаками. Формальное сведение задачи динамики к задаче статики при помощи введения сил инерции, которое довольно часто практикуется в задачах механики, носит название метода кинетостатики. Вторая (обратная или основная) задача динамики точки ставится следующим образом: на точку массы т, положение и вектор скорости которой в начальный момент времени известны, действуют заданные силы; требуется найти движение этой точки (ее координаты х,у,z) как функции времени. Так как правые части уравнений (3.2) -проекции сил на оси х, у, z- являются известными функциями координат, их первых производных и времени, то для получения требуемого результата надо проинтегрировать систему трех обыкновенных дифференциальных уравнений второго порядка. Аналитическое решение такой задачи оказывается возможным лишь в отдельных частных случаях. Однако численные методы позволяют решить задачу с практически любой необходимой степенью точности. Предположим, что мы проинтегрировали систему дифференциальных уравнений (3.2) и нашли выражения для координат х, у, z в функции времени. Так как система (3.2) имеет шестой порядок, то при интегрировании ее появятся шесть произвольных постоянных и мы получим следующие выражения для координат: (3.5) Для определения постоянных (i = 1, 2,... 6) в этом решении следует обратиться к начальным условиям задачи. Записывая поставленные условия применительно к декартовым координатам, имеем при t = 0 (3.6) Подставляя в найденное выражение (3.5) первую группу начальных условий (3.6) при t =0, получаем три уравнения, связывающие постоянные интегрирования: . Недостающие три соотношения находятся следующим образом: дифференцируем уравнения движения (3.5) по времени и подставляем в полученные выражения вторую группу начальных условий (3.6) при t = 0; имеем Решая теперь совместно эти шесть уравнений, получим искомые значения шести произвольных постоянных интегрирования (i = 1, 2,... 6), подставляя которые в уравнения движения (3.5), находим окончательное решение задачи. (9) При составлении дифференциальных уравнений движения точки для конкретного случая следует, прежде всего, оценить действия различных факторов: учесть основные силы и отбросить второстепенные. При решении различных технических задач часто пренебрегают силами сопротивления воздуха и силами сухого трения; так, например, поступают при вычислении собственных частот колебательных систем, на значения которых упомянутые силы оказывают незначительное влияние. Если тело движется вблизи поверхности земли, то его силу тяжести считают постоянной, а поверхности земли — плоской; при удалении от поверхности земли па расстояния, сравнимые с ее радиусом, необходимо уже принимать во внимание изменение силы тяжести с высотой, поэтому в таких задачах используется закон тяготения Ньютона. Нельзя пренебрегать силой сопротивления воздуха при больших скоростях движения тела; в этом случае обычно принимают квадратичный закон сопротивления (сила сопротивления считается пропорциональной квадрату скорости движения тела). (3.6) Здесь - скоростной напор, ρ – плотность среды, в которой движется точка, - коэффициент сопротивления, - характерный поперечный размер. Однако, как будет показано ниже, в некоторых задачах необходимо учитывать внутреннее трение в жидкости (в газе), что приводит к более общей формуле для определения силы сопротивления Если движение тела происходит в вязкой среде, то и при небольших скоростях движения надо учитывать силу сопротивления, однако в этой задаче достаточно считать ее пропорциональной первой степени скорости. Пример. Рассмотрим задачу о прямолинейном движении точки в среде с сопротивлением, сила сопротивления задана выражением (3.6). Начальная скорость точки - , конечная - . Надо определить среднюю скорость движения на заданном интервале скоростей. Из формулы (3.2) имеем или (3.7) Это дифференциальное уравнение с разделяющимися переменными, решение которого может быть представлено в виде , проинтегрировав левую и правую части, получим следующее решение (3.8) Для определения пройденного расстояния перейдём к новым координатам, для этого умножим левую и правую части уравнения (3.7) на ; при этом заметим, что .
тогда и здесь получаем дифференциальное уравнение с разделяющимися переменными
, или (3.9) Из формул (3.8) и (3.9) получаем выражение для средней скорости . Для средняя скорость равна . Но если положить , то нетрудно увидеть, что в этом случае и , то есть движущееся тело никогда не остановится, что, во-первых, противоречит здравому смыслу, а во-вторых неясно чему будет равна средняя скорость. Чтобы определить возьмём левые интегралы в пределах от до бесконечно малого ε, тогда получим и . Неопределённость вида раскрыта по правилу Лопиталя. Столь необычный результат является следствием неправильно выбранной модели сопротивления движению. Рассмотрим пример, в котором сила сопротивления задана формулой . Как и в предыдущем случае имеем дифференциальное уравнение с разделяющимися переменными или . Проделав выкладки аналогичные предыдущему решению, получим
, Для имеем . Для определения пройденного расстояния переходим к зависимости S(x) и получаем
Для имеем , Тогда средняя скорость равна (3.10) Как видно в этом случае время и пройденный путь конечны, а средняя скорость определяется формулой (3.10).
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 609; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.2.6 (0.011 с.) |