Связи, классификация связей, число степеней свободы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Связи, классификация связей, число степеней свободы.



 

Положение системы N материальных точек определяется сово­купностью 3N декартовых координат: этих точек. Положение твердого тела задается тремя коор­динатами одной из его точек, принятой за полюс, и тремя эйлеровымигпнп углами . Если система состоит из ряда твердых тел, то для определения положения такой системы в пространстве достаточно задать координаты полюсов и значения эйлеровых углов для каждого из тел. Положение твердых тел можно задавать не только эйлеровыми углами, но и другими, играю­щими аналогичную роль параметрами. Таким образом, для опреде­ления положения материальной системы в пространстве применяют самые разнообразные приемы. Любая совокупность параметров, достаточная для определения положения системы в пространстве, называется обобщенными координатами системы. При этом не предрешается вопрос о том, все ли координаты необходимы для указанной цели, нельзя ли определить положение системы при по­мощи только части этих параметров или вообще меньшего числа параметров. Вообще если положение движущейся системы N материальных точек с прямоугольными координатами () в любой мо­мент времени может быть задано при помощи какой-нибудь сово­купности обобщенных координат (), то между первой и второй совокупностями должны существовать соотношения вида:

содержащие в общем случае явно время. Если материальная система несвободна, то обобщенные коор­динаты так же как и их производные по времени - обобщенные скорости подчиняются ограничительным условиям, которые мы называем связями. Аналитически связи выра­жаются равенствами, заключающими время, координаты и их про­изводные, и иногда сопровождаемые знаками неравенств; последние указывают на возможность прекращения действия связей. Остано­вимся на случае связей, выражаемых равенствами. Связи, выражаемые аналитически уравнениями вида

(4.1)

носят общее наименование кинематических; обобщенные скорости в соотношение (4.1), как правило, входят линейно.

Если время не входит явно в уравнения связей, то такие связи называют стационарными, в противном случае - нестационарными.

Кинематические связи, уравнения которых не содержат обобщен­ных скоростей или путем интегрирования могут быть к такому виду приведены, называют голономными или интегрируемыми, в против­ном случае - неголономными или неинтегрируемыми.

Голономные связи накладывают ограничения на координаты то­чек системы, т.е. на ее положение в пространстве. Вместе с тем, будучи продифференцированы по времени, уравнения голономных связей представляют ограничения, накладываемые на скорости точек системы. В противоположность этому неголономные связи ограничи­вают только скорости точек системы, так как уравнения связей не могут быть проинтегрированы и, следовательно, не существует конечных соотношений между координатами, соответствующих неголономным связям. Примером голономной нестационарной связи может служить математический маятник переменной длины

.

Если уравнение связи задано неравенствами, то такая связь называется односторонней (если знак равенства – то двухсторонней).

Чем больше число условий, налагаемых связями на бесконечно малые перемещения системы, тем меньше произвола остается в опре­делении возможных перемещений. Это обстоятельство характеризуют числом степеней свободы системы, которое определяется как число независимых, допускающих выбор по произволу, координат системы. Так для трёх свободных точек будем иметь 9 независимых координат , или 9 степеней свободы. Но если все точки соеденены жесткими стержнями, то имеются три уравнения связей

(расстояния между точками остаются неизменными), т.е. теперь это твёрдое тело и для определения его движения необходимо задать шесть параметров. Действительно, из девяти параметров независимыми являются 9-3=6 параметров. Это правило можно распространить для любого числа обобщённых координат при наличии голономных связей. В случае систем, подчиненных голономным связям, число степеней свободы совпадает с числом независимых обобщенных координат. Так, например, если система, состоящая из N точек, подчинена s голономным связям, то число степеней свободы такой системы согласно будет совпадать с числом независимых коор­динат k=3N-s. Точка, вынужденная двигаться по заданной поверхности, будет иметь две степени свободы; точка, движущаяся по заданной пространственной кривой, будет, иметь одну степень свободы и т. д. В тех случаях, когда положение системы определяется обоб­щенными координатами ,(j = 1, 2,..., ), не являющимися, вообще говоря, независимыми, а подчиненными s голономным связям, число степеней свободы системы будет равно k = r-s, т. е. опять равно числу независимых обобщенных координат системы. Так, свободное твердое тело (r = 6, s = 0) имеет шесть степе­ней свободы, тело, вращающееся вокруг неподвижного центра, — три степени свободы, в плоском движении — также три степени свободы. Система с обобщенными координатами, подчиненная s голо­номным и s' неголономным связям, будет иметь число степеней свободы k=r-s-s', равное числу (r-s) независимых обобщенных координат, уменьшен­ному на число s' неголономных связей.

 

Возможные перемещения.

 

Обобщенные координаты представляют функции вре­мени, определяемые интегрированием при заданных начальных усло­виях дифференциальных уравнений движения, выражающих законы механики. Этой совокупностью функций времени определяется истинное движение системы. Дифференциалы обоб­щенных координат представляют их бесконечно малые изменения в истинном движении, пропорциональные промежутку времени dt: .

При формулировании общих положений механики оказывается полезным ввести в рассмотрение бесконечно малые величины иной при­роды. Отвлекаясь от движения, зададимся вопросом, какое множество конфигураций в этот момент времени допускают связи системы. Если ограничиться рассмотрением конфигураций бесконечно близких к истинным и через обозначить бесконечно малые приращения обобщенных координат, называемые их вариациями, то упомянутое множество определится совокупностью величин

где в случае голономной системы вариации совершенно произ­вольны. Мы можем сказать, что в момент t связи такой системы, имеющей n степеней свободы, допускают конфигураций.

Рассмотрим точку системы , задаваемую вектор-радиусом . Изменение за промежуток времени dt определяется дифферен­циалом

(4.2)

представляющим бесконечно малое перемещение точки в истин­ном движении системы. Ему противопоставляется виртуальное или возможное перемещение точки , обозначаемое . Этот беско­нечно малый вектор представляет изменение вектор-радиуса точки при мысленном переведении системы из рассматриваемой конфигура­ции в одну из () допускаемых связями бесконечно близких конфигураций; он вычисляется в фиксированный момент t с точностью до первых степеней относи­тельно вариаций :

(4.3)

Если связи не зависят от времени, то в выражении (4.2) отпадает последнее слагаемое. Дифференциалы связаны теми же соотношениями, что и ва­риации ; и истинное перемещение

принадлежит множеству виртуальных или возможных перемещений. В случае же нестационарных связей сравнение выражений (4.2) и (4.3) показывает, что не принадлежит этому множе­ству. Мы в дальнейшем считаем термины «виртуальный» и «возможный» синонимами, так как второй достаточно хорошо передает содержание французского слова virtuel. Сказанное о вектор-радиусе распространяется на любую функцию обобщенных координат и времени . Дифферен­циал ее - это приращение функции в процессе движении за проме­жуток времени dt:

а вариация

- бесконечно малое изменение, обусловленное переходом в фикси­рованный момент времени к бесконечно близкой конфигурации системы.

Рассмотренный в этом параграфе способ варьирования, заключаю­щийся в сравнении конфигураций системы, допускаемых связями, и фиксированный момент времени t, называется синхронным варьированием. Можно рассмотреть более общую операцию асинхронного варьирования, когда истинная конфигурация в момент t сравнивается с бесконечно близкой, допускаемой связями в момент , отлич­ный от t.

В механике Лагранжа основным понятием являются возможные перемещения, т.е. любые бесконечно малые перемещения системы, допускаемые связями, которые есть вариации координат или функций. Как указывалось выше дифференциал функции и вариация функции не одно и тоже. Уже само понятие вариация, очевидно, относится к особому методу вычисления, которое и носит название вариационное исчисление, о нём и пойдёт речь ниже.

Кроме задач определения экстремальных значений функций одной или нескольких переменных в технике, экономике и в раз­личных областях науки нередко приходится иметь дело с нахож­дением минимальных или максимальных значений величин осо­бого типа, которые называются функционалами.

Приведем несколько примеров. Функционалом является дли­на кривой, соединяющей две точки и на плоско­сти. Как известно, длина кривой на плоскости, заданной функцией у(х), определяется формулой

и, действительно, зависит от функции у(х). Отметим здесь, что функционалом является и длина пространственной кривой. Примером несколько иного типа является время движения управляемого объекта, зависящее как от формы траектории, так и от управляющего воздействия.

Вариационное исчисление изучает методы, с помощью кото­рых могут быть найдены минимальные или максимальные зна­чения функционалов. Задачи, в которых нужно найти минимум или максимум функционала, называются вариационными зада­чами. Многие законы физики сводятся к утверждению, что некото­рый функционал в изучаемом процессе имеет максимум или ми­нимум. В таком виде эти законы носят название вариационных принципов физики. В качестве примеров можно привести прин­цип наименьшего действия Гамильтона—Остроградского в меха­нике, принцип Ферма в оптике, различные вариационные прин­ципы классической и релятивистской теории поля и многие другие законы физики.

Начало созданию вариационного исчисления положили ис­следования решений задачи о брахистохроне, сформулированной И.Бернулли (1667—1748 гг.) в 1696 году. Он предложил математикам задачу о линии быстрейшего ската. В ней надо найти соединяющую две точки не лежащую на одной вертикали линию, обладающую тем свойством, что точка скатится из точки в точку за кратчайшее время. Оказалось, что линией быстрейшего ската оказалась циклоида.

Вариационное исчисле­ние оформилось в самостоятельную математическую дисциплину со своими методами исследования благодаря фундаментальным работам действительного члена Петербургской Академии наук Леонарда Эйлера (1707—1783 гг.). Л. Эйлера можно считать созда­телем вариационного исчисления.

В чём разница нахождения экстремума гладкой функции одной переменной и экстремума функционала вида . Для читателя незнакомого с дифференциальным исчислением можно предложить такой способ: взять некоторое значение координаты и сосчитать , затем взять и определить . Если , то мы на правильном пути. Берём следующее значение и продолжаем наши вычисления до тех пор, пока не достигнем максимума функции. Для читателя, знакомого с дифференциальным исчислением, максимум функции, если он существует, определяется из условия равенства нулю первой производной заданной функции. Совсем иное найти непрерывную функцию у(х), удовлетворяющую граничным условиям и , которая сообщает, например, минимум указанного выше функционала. Здесь уже надо рассматривать различные функции, отличающиеся друг от друга. Для читателя незнакомого с вариационным исчислением можно предложить такой способ: взять некоторую функцию и сосчитать интеграл . Возьмём новую функцию , мало отличающуюся от и снова сосчитаем интеграл . Если < , то можно перейти к следующему приближению и т.д. Правда, в этом случае неизвестно, когда надо остановиться. Для читателя, знакомого с вариационным исчислением, минимум функционала, если он существует, определяется из условия равенства нулю первой вариации заданного функционала. Но в отличии от максимума функции, который определятся нахождением одной точки, первая вариация функционала приводит к уравнению Эйлера

 

(4.4)

после подстановки функции в это уравнение получаем дифференциальное уравнение второго порядка, уравнение экстремалей, решение которого, если оно существует, и даёт искомую кривую у(х). Возможным перемещениям можно дать более простую интерпретацию, если рассмотреть пример, не имеющий отношения к теоретической механике. Пусть известна начальная точка А (Санкт-Петербург) и конечная точка В (к примеру, Петропавловск на Камчатке). Аналогом функционала здесь будет функция цели: маршрут с максимумом впечатлений и удовольствий. Автор предоставляет читателю самому рассмотреть различные варианты (возможные перемещения) маршрута. В конце концов, читатель из всех возможных вариантов выбирает действительный маршрут. Но при выборе маршрута могут возникнуть некоторые ограничения, к примеру, время путешествия, что, естественно, приведёт к выбору другого маршрута, к другим вариантам (возможным перемещениям); свобода выбора стала меньше (число степеней свободы меньше). Ну а если рассмотреть ещё и финансовые ограничения, то может случиться, что осуществить это путешествие просто невозможно (случай, когда решения не существует). Таким образом, возможные перемещения – это варианты перебора, функционал – функция цели, свобода выбора – число степеней свободы, действительное перемещение – выбранный маршрут.

Задачей механики Лагранжа будет отыскание среди возможных перемещений таких, которые удовлетворяют выбранным критериям.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 888; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.165.122.173 (0.036 с.)