Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Изменение коэффициентов целевой функции.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В общем виде целевую функцию задачи ЛП с двумя переменными можно записать следующим образом: Z = с1x1 + с2х2 Изменение значений коэффициентов c1 и c2 приводит к изменению угла наклона прямой z. Графический способ решения задачи ЛП показывает, что это может привести к изменению оптимального решения: оно будет достигаться в другой угловой точке пространства решений. Вместе с тем, очевидно, существуют интервалы изменения коэффициентов c1 и c2, когда текущее оптимальное решение сохраняется. Задача анализа чувствительности и состоит в получении такой информации. В частности, представляет интерес определение интервала оптимальности для отношения c1/c2 (или, что то же самое, для c2/c1); если значение отношения c1/c2 не выходит за пределы этого интервала, то оптимальное решение в данной модели сохраняется неизменным. Следующий пример показывает, как можно получить необходимый результат с помощью анализа графического представления модели ЛП. Пример 1. Применим процедуру анализа чувствительности к модели для компании "Reddy Mikks". На рис. 1 видно, что функция Z = 5х1 + 4х2 достигает максимального значения в угловой точке С. При изменении коэффициентов целевой функции Z = с1x1 + с2х2 точка С останется точкой оптимального решения до тех пор, пока угол наклона линии z будет лежать между углами наклона двух прямых, пересечением которых является точка С. Этими прямыми являются 6х1 + 4х2 = 24 (ограничение на сырье Ml) и х1 + 2х2 = 6 (ограничение на сырье М2). Алгебраически это можно записать следующим образом: или В первой системе неравенств условие c1 <> 0 означает, что прямая, соответствующая целевой функции, не может быть горизонтальной. Аналогичное условие в следующей системе неравенств означает, что эта же прямая не может быть вертикальной. Из рис. 1 видно, что интервал оптимальности данной задачи (он определяется двумя прямыми, пересекающимися в точке С) не разрешает целевой функции быть ни горизонтальной, ни вертикальной прямой. Таким образом, мы получили две системы неравенств, определяющих интервал оптимальности в нашем примере. (Когда c1 и c2 могут принимать нулевые значения, интервал оптимальности для отношения c1/c2 (или c2/c1) необходимо разбить на два множества, где знаменатели не обращались бы в нуль. Итак, если коэффициенты c1 и c2 удовлетворяют приведенным выше неравенствам, оптимальное решение будет достигаться в точке С. Отметим, если прямая Z = с1x1 + с2х2 совпадет с прямой х1 + 2х2 = 6, то оптимальным решением будет любая точка отрезка CD. Аналогично, если прямая, соответствующая целевой функции, совпадет с прямой 6x1 + 4х2 = 24, тогда любая точка отрезка ВС будет оптимальным решением. Однако заметим, что в обоих случаях точка С остается точкой оптимального решения. Приведенные выше неравенства можно использовать при определении интервала оптимальности для какого-либо одного коэффициента целевой функции, если предположить, что другой коэффициент остается неизменным. Например, если в нашей модели зафиксировано значение коэффициента с2 (пусть с2 = 4), тогда интервал оптимальности для коэффициента с1 получаем из неравенств путем подстановки туда значения с2 = 4. После выполнения элементарных арифметических операций получаем неравенства для коэффициента с1: 2 ≤ с1 ≤ 6. Аналогично, если зафиксировать значение коэффициента с1 (например, с1 = 5), тогда из неравенств получаем интервал оптимальности для коэффициента с2: 10/3 ≤ с2 ≤ 10. Стоимость ресурсов. Во многих моделях линейного программирования ограничения трактуются как условия ограниченности ресурсов. В таких ограничениях правая часть неравенств является верхней границей количества доступных ресурсов. Рассмотрим чувствительность оптимального решения к изменению ограничений, накладываемых на ресурсы. Такой анализ задачи ЛП предлагает простую меру чувствительности решения, называемую стоимостью единицы ресурса; при изменении количества доступных ресурсов (на единицу) значение целевой функции в оптимальном решении изменится на стоимость единицы ресурса. Проиллюстрируем этот вид анализа задачи ЛП на следующем примере.
Пример 1. В модели для компании "Русские краски" первые два неравенства представляют собой ограничения на использование сырья M1 и М2 соответственно. Определим стоимость единиц этих ресурсов. Начнем с ограничения для сырья M1. Напомним, что в данной задаче оптимальное решение достигается в угловой точке С, являющейся точкой пересечения прямых, соответствующих ограничениям на сырье M1 и М2 (рис. 1). При изменении уровня доступности материала M1 (увеличение или уменьшение текущего уровня, равного 24 т) точка С оптимального решения "плывет" вдоль отрезка DG. Любое изменение уровня доступности материала M1, приводящее к выходу точки пересечения С из этого отрезка, ведет к неосуществимости оптимального решения в точке С. Поэтому можно сказать, что концевые точки D = (2, 2) и G = (6, 0) отрезка DG определяют интервал осуществимости для ресурса M1. Количество сырья M1, соответствующего точке D = (2, 2), равно 6x1 + 4x2 = 6*2 + 4*2 = 20 т. Аналогично количество сырья, соответствующего точке G = (6, 0), равно 36 т. Таким образом, интервал осуществимости для ресурса M1 составляет 20 ≤ M1 ≤ 36 (здесь через M1 обозначено количество материала M1). Если мы определим М1 как M1 = 24 + D1, где D1 — отклонение количества материала М1 от текущего уровня в 24 т, тогда последние неравенства можно переписать как 20 ≤ 24 + D1 ≤ 36 или -4 ≤ D1 ≤ 12. Это означает, что текущий уровень ресурса M1 может быть уменьшен не более чем на 4 т и увеличен не более чем на 12 т. В этом случае гарантируется, что оптимальное решение будет достигаться в точке С — точке пересечения прямых, соответствующих ограничениям на ресурсы M1 и М2. Теперь вычислим стоимость единицы материала M1. При изменении количества сырья M1 от 20 до 36 тонн, значения целевой функции z будут соответствовать положению точки С на отрезке DG. Обозначив через y1 стоимость единицы ресурса M1, получим следующую формулу: Если точка С совпадает с точкой D = (2, 2), то z = 5*2 + 4*2 = 18 (тысяч д.e.), если же точка С совпадает с точкой G = (6, 0), тогда z = 5*6 + 4*0= 30 (тысяч д.e.). Отсюда следует, что (тысяч д.е. на тонну материала M1). Этот результат показывает, что изменение количества ресурса M1 на одну тонну (если общее количество этого ресурса не меньше 20 и не больше 36 тонн) приводит к изменению в оптимальном решении значения целевой функции на 750 д.е. Теперь рассмотрим ресурс М2. На рис. 2 видно, что интервал осуществимости для ресурса М2 определяется концевыми точками В и H отрезка ВН, где В = (4, 0) и Н= (8/3, 2). Точка Н находится на пересечении прямых ED и ВС. Находим, что количество сырья М2, соответствующего точке В, равно x1 + 2х2 = 4 + 2*0 = 4 т, а точке Н — 8/3+2*2= 20/3 т. Значение целевой функции в точке В равно 5x1 + 4х2 = 5*4 + 4*0 = 20 (тысяч д.e.), а в точке Н — 5*8/3 + 4*2 = 64/3 (тысяч д.e.). Отсюда следует, что количество сырья М2 может изменяться от 4 до 20/3 тонн, а стоимость единицы ресурса М2, обозначенная как у2, равна (тысяч д.е. на тонну материла M2).
Тема 5. Применение симплекс-метода.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 1462; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.140.232 (0.01 с.) |