Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Классификации методов моделирования систем.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Постановка любой задачи заключается в том, чтобы перевести ее словесное, вербальное описание в формальное. В случае относительно простых задач такой переход осуществляется в сознании человека, который не всегда даже может объяснить, как он это сделал. Если полученная формальная модель (математическая зависимость между величинами в виде формулы, уравнения, системы уравнений) опирается на фундаментальный закон или подтверждается экспериментом, то этим доказывается ее адекватность отображаемой ситуации, и модель рекомендуется для решения задач соответствующего класса. По мере усложнения задач получение модели и доказательство ее адекватности усложняется. Вначале эксперимент становится дорогим и опасным (например, при создании сложных технических комплексов, при реализации космических программ и т. д.), а применительно к экономическим объектам эксперимент становится практическим нереализуемым, задача переходит в класс проблем принятия решений, и постановка задачи, формирование модели, т. е. перевод вербального описания в формальное, становится важной составной частью процесса принятия решения. Причем эту составную часть не всегда можно выделить как отдельный этап, завершив который, можно обращаться с полученной формальной моделью так же, как с обычным математическим описанием, строгим и абсолютно справедливым. Большинство реальных ситуаций проектирования сложных техни-ческих комплексов и управления экономикой необходимо отображать классом самоорганизующихся систем, модели которых должны постоянно корректироваться и развиваться). При этом возможно изменение не только модели, но и метода моделирования, что часто является средством развития представления ЛПР о моделируемой ситуации. Иными словами, перевод вербального описания в формальное, осмысление, интерпретация модели и получаемых результатов становятся неотъемлемой частью практически каждого этапа моделирования сложной развивающейся системы. Часто для того, чтобы точнее охарактеризовать такой подход к моделированию процессов принятия решений, говорят о создании "механизма" моделирования, "механизма" принятия решений (например, "хозяйственный механизм", "механизм проектирования и развития предприятия" и т. п.). Возникающие вопросы ‑ как формировать такие развивающиеся модели или "механизмы"? как доказывать адекватность моделей? ‑ и являются основным предметом системного анализа. Для решения проблемы перевода вербального описания в формальное в различных областях деятельности стали развиваться специальные приемы и неформализованные методы моделирования. Так, возникли слабо формализованные методы типа "мозговой атаки", "сценариев", экспертных оценок, "дерева целей" и т.п. В свою очередь, развитие математики шло по пути расширения средств постановки и решения трудноформализуемых задач. Наряду с детерминированными, аналитическими методами классической математики возникла теория вероятностей н математическая статистика (как средство доказательства адекватности модели на основе представительной выборки и понятия вероятности правомерности использования модели и результатов моделирования). Для задач с большей степенью неопределенности инженеры стали привлекать теорию множеств, математическую логику, математическую лингвистику, теорию графов, что во многом стимулировало развитие этих направлений. Иными словами, математика стала постепенно накапливать средства работы с неопределенностью, со смыслом, который классическая математика исключала из объектов своего рассмотрения. Таким образом, между неформальным, образным мышлением человека и формальными моделями классической математики сложился как бы "спектр" методов, которые помогают получать и уточнять (формализовать) вербальное описание проблемной ситуации, с одной стороны, и интерпретировать формальные модели, связывать их с реальной действительностью, с другой. Этот спектр условно представлен на рис. 28 а. Методы моделирования возникали и развивались параллельно. Существуют различные модификации сходных методов. Их по-разному объединяли в группы, т. е. исследователи предлагали разные классификации, в основном - для формальных методов. Постоянно возникают новые методы моделирования как бы на "пересечении" уже сложившихся групп. Однако основную идею ‑ существование "спектра" методов между вербальным и формальным представлением проблемной ситуации ‑ этот рисунок иллюстрирует. Удобно "переломить" этот "спектр методов" примерно в середине, где графические методы смыкаются с методами структуризации, т. е. разделить методы моделирования систем на два больших класса: методы формализованного представления систем (МФПС) и слабо формализованные методы, направленные на активизацию использования интуиции и опыта специалистов (МАИС). Возможные классификации этих двух групп методов приведены на рис. 28 б. Классификации МАИС и особенно МФПС могут быть разными. На рис. 28 6 приведена классификация МФПС, предложенная российским исследователем Фёдором Евгеньевичем Темниковым. Необходимо отметить, что предлагаемые названия групп методов более предпочтительны, чем используемые иногда термины качественные и количественные методы, поскольку, с одной стороны, методы, отнесенные к группе МАИС, могут использовать и формализованные представления (при разработке сценариев могут применяться статистические данные, проводиться некоторые расчеты; с формализацией связаны получение и обработка экспертных оценок, методы морфологического моделирования); а, с другой стороны, в рамках любой формальной системы, сколь бы полной и непротиворечивой она не казалась, имеются положения (соотношения, высказывания), истинность или ложность которых нельзя доказать формальными средствами этой системы, а для преодоления неразрешимой проблемы нужно расширять формальную систему, опираясь на содержательный, качественный анализ. Иными словами, строгого разделения на формальные и неформальные методы не существует. Можно говорить только о большей или меньшей степени формализованности или, напротив, большей или меньшей опоре на интуицию, "здравый смысл". Специалист по системному анализу должен понимать, что любая классификация условна. Она лишь средство, помогающее ориентироваться в огромном числе разнообразных методов и моделей. Поэтому разрабатывать классификацию нужно обязательно с учетом конкретных условий, особенностей моделируемых систем (процессов принятия решений) и предпочтений ЛПР, которым можно предложить выбрать классификацию. Следует также оговорить, что новые методы моделирования часто создаются на основе сочетания ранее существовавших классов методов.
Рис. 28. Диапазон и классификация методов моделирования по Ф.Е. Темникову Так, методы, названные на рис. 26 б комплексированными (комбинаторика, топология) начинали развиваться параллельно в рамках линейной алгебры, теории множеств, теории графов, а затем оформились в самостоятельные направления. Существуют также новые методы, базирующиеся на сочетании средств МАИС и МФПС. Эта группа методов представлена на рис. 28 б в качестве самостоятельной группы методов моделирования, обобщенно названной специальными методами. Классификация методов моделирования, подобная рассмотренной, помогает осознанно выбирать методы моделирования и должна входить в состав методического обеспечения работ по проектированию сложных технических комплексов, по управлению предприятиями и организациями. Она может развиваться, дополняться конкретными методами, т. е. аккумулировать опыт, накапливаемый в процессе проектирования и управления.
|
||||||
Последнее изменение этой страницы: 2016-06-29; просмотров: 511; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.82.22 (0.008 с.) |