Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общие принципы сенсорной регуляции.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Все живые организмы нуждаются в информации об окружающей среде. Бактерии способны улавливать и определять малейшие изменения в окружающей среде. Эту возможность обеспечивают сенсорные (от лат. sensus — чувство, ощущение, восприятие) системы. Сенсорные системы бактерий похожи на подобные системы в клетках высших организмов. Основными компонентами сенсорных систем являются: · сенсоры (трансмембранные или цитоплазматические), детектирующие изменения окружающих условий; · внутриклеточные посредники, получающие информацию от сенсоров и передающие ее на эффекторы; · эффекторы - непосредственные регуляторы физиологического ответа (как правило, на уровне транскрипции). У бактерий преобладают двухкомпонентные сенсорные системы, в них 2 белка регулируют передачу сигнала: 1-й белок сенсор; 2-й белок регулятор. Белок-сенсор реагирует на изменения определенных параметров окружающей среды (напр., на концентрацию веществ), передаёт сигнал на белок-регулятор, который координирует поведение бактерий в зависимости от условий окружающей среды. Механизм действия 2-ухкомпонентных сенсорных систем. После поступления сигнала извне на белок-сенсор он автофосфорилируеся. Воздействует на белок-регулятор, в котором при этом фосфорилируется аспарагиновый участок. После фосфорилирования белок-регулятор действует на определенные участки генома, регулируя активность определенных генов. Белок-регулятор может выступать в роли активатора, а также в роли репрессора.
47.. Передача информации через клеточную мембрану. Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из внешней среды. "Узнавание" сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. Клетку-мишень определяют по способности избирательно связывать данную сигнальную молекулу с помощью рецептора. Если сигнал воспринимается мембранными рецепторами, то схему передачи информации можно представить так:
Несмотря на огромное разнообразие сигнальных молекул, рецепторов и процессов, которые они регулируют, существует всего несколько механизмов трансмембранной передачи информации: с использованием аденилатциклазной системы, инозитолфосфатной системы, каталитических рецепторов, цитоплазматических или ядерных рецепторов. 48. Белковые каналы, транспортеры и рецепторы. Рецепторная функция воротных каналов.
49. Двухкомпонентные сенсорные системы приводит к активации эффекторного домена этого белка, что и вызывает в конечном итоге специфический физиологический ответ. В основе работы двухкомпонентной системы лежат три реакции, дающие два фосфорилированных продукта. Хоть ГК и похожи по своей основной функции (фосфорилирование белков) на "классические" Ser/Thr/Tyr киназы, химизм реакции принципиально отличается – ГК образует не фосфоэфирную, а фосфоамидную связь. Реакция гидролиза фосфоамидной связи имеет гораздо большее отрицательное значение ∆G по сравнению с гидролизом фосфоэфирной связи, поэтому равновесие р-и сдвинуто в сторону нефосфорилированного белка ГК. Следовательно, только очень небольшой процент ГК существует в фосфорилированном виде => не фосфорилирование ГК как таковое, а перенос фосфата является основным в работе этого фермента. Богатая энергией связь N~P идеально подходит для передачи фосфата. Именно поэтому такая же связь используется хорошо знакомыми вам ферментами I и II ФТС, основной функцией которых является также не фосфорилирование как таковое, а передача фосфата "по цепочке" в направлении его конечного акцептора – фосфорилируемого сахара. В молекуле РО фосфорилируется остаток аспартата. Предположительно, именно этот остаток используется, т.к. фосфорилирование его длинной ацильной цепи вызывает протяженные конформационные изменения в молекуле РО, необходимые для изменения эффекторной активности. Еще одним важным свойством фасфоаспартата является быстрый гидролиз ацилфосфата как в кислой, так и в щелочной среде. К тому же, многие РО имеют автофосфатазную активность, еще более уменьшающую время полужизни фосфоаспартата. Таким образом, основным результатом выбора для фосфорилирования специфических остатков в молекулах ГК и РО является высокая мобильность системы. При отсутствии стимула оба компонента будут дефосфорилированы. Детекция стимула гистидинкиназой вызовет ее фосфорилирование и очень быструю передачу фосфата молекуле регулятора ответа, что приведет к быстрому ответу бактерии на изменившиеся условия. В свою очередь, легкость дефосфорилирования молекулы РО приведет к быстрому возвращению всей регуляторной системы, а вместе с ней и метаболизма бактериальной клетки, в исходное (нефосфорилированное) состояние при исчезновении стимула, вызвавшего первоначальное фосфорилирование ГК. 50. Регуляторы: Регуляторный домен. Наиболее консервативная часть белка, содержит кластер остатков аспартата, которые связывают Mg2+ и формируют активный сайт для переноса фосфата Эффекторный домен Эффекторным доменам сложно дать общую характеристику по причине их большогоразнообразия. Большинство эффекторных доменов имеет ДНК-связывающую активность и действиет путем активации или репрессии транскрипции специфических генов. Тем не менее, узнаваемые последовательности ДНК, расположение сайтов связывания и механизм транскрипционной регуляции существенно различаются, даже у РО из одного подсемейства. Сенсоры: Линкерный домен У трансмембранных ГК периплазматический сенсорный домен соединяется с цитоплазматическим киназным ядром при помощи трансмембранной α-спирали и цитоплазматического линкера. Линкерные домены совершенно необходимы для нормального функционирования сенсорных ГК, однако об их функциях известно немного. Размер линкеров варьирует в пределах 40-180 АК. Многие из них имеют характерный α-спиральный coiled coil мотив, в большинстве случаев предшествующий фосфорилируемому гистидиновому остатку киназного ядра. Две наиболее вероятные функции линкерных доменов – правильное расположение мономеров в димере ГК и передача сигнала от сенсорной к киназной части белка. Каталитическое киназное ядро. Унифицирующим структурным свойством семейства ГК является характерное киназное ядро, состоящее из домена димеризации и АТФ/АДФ-связывающего фосфотрансферного или каталитического домена. Киназное ядро имеет размер ~350 АК и отвечает за связывание АТФ и осуществление киназной реакции. Консервативный остаток гистидина, являющийся субстратом киназной реакции, располагается в домене димеризации. HPt-домены у прокариот встречаются исключительно в составе гибридных киназ, тогда как у эукариот – как отдельные белки. Эти домены имеют размер около 120 АК и содержат остаток гистидина, способный участвовать в фосфотрансферных реакциях. HPt-домены не имеют ни киназной, ни фосфатазной активности, поэтому они идеально приспособлены для коммуникации между различными белками. При всем разнообразии первичных последовательностей HPt-доменов их третичная структура очень схожа и напоминает таковую домена димеризации киназного ядра, включая расположение консервативного гистидинового остатка. Сенсорный домен Изменения в окружающей среде детектируются непесредственно (или опосредованно) аминоконцевым сенсорным доменом ГК. Между разнообразными мембранными сенсорными доменами практически полностью отсутствует сходство на уровне первичной последовательности, что поддерживает идею о специфичности детектируемых ими взаимодействий. В большинстве случаев специфический стимул и механизм его детекции остаются неизвестными. Информация о трехмерной структуре этих доменов начинает появляться только сейчас, поэтому как сигнал передается к киназному ядру, пока не ясно. 51. Архитектура регуляторных систем соответствующий адаптивный ответ. Фосфотрансляционные системы Еще более усложненные версии двухкомпонентных систем используют более одного акта передачи фосфата. Такие сигнальные пути называют фосфотрансляционными системами (системами передачи фосфата). В простейшем случае фосфотрансляционная система удлиняет цепочку передачи фосфата на два шага, Asp -> His и His -> Asp. Таким образом, базовая фосфотрансляционная система имеет уже четыре фосфорилированных белковых продукта и пять реакций переноса фосфата. Множественные фосфорилируемые домены фосфотрансляционных систем создают возможность альтернативных путей передачи фосфата. В гибридной ГК ArcB любой из имеющихся His-содержащих доменов (димеризационный или же HPt) может получить фосфат от АТФ и передать его РО ArcA. Два различных варианта используются в аэробных и анаэробных условиях. Еще более сложная организация может достигаться за счет интеграции различных сигнальных цепочек в сигнальные сети. У B. subtilis практически каждая двухкомпонентная система взаимодействует с как минимум еще одной цепочкой передачи фосфата. В качестве примера такой интеграции можно привести взаимодействие путей, контролирующих утилизацию фосфата аэробного и анаэробного дыхания и споруляцию. Дыхание и утилизация фосфата регулируются совместно – фосфо-PhoP активирует экспрессию ResD и наоборот. Однако, когда клетка вступает на путь споруляции, и дыхание, и утилизация фосфата репрессируются, поскольку фосфо-Spo0A негативно регулирует фосфорилированные ResD и PhoP.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 1424; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.84.179 (0.011 с.) |