Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Посттрансляционная регуляция. Участие молекулярных шаперонов в регуляторных процессах.Содержание книги
Поиск на нашем сайте
После завершения трансляции большинство белков подвергается дальнейшим химическим модификациям, которые называются посттрансляционными модификациями. Посттрансляционные модификации могут регулировать продолжительность существования белков в клетке, их ферментативную активность и взаимодействия с другими белками. Иногда посттрансляционные модификации являются обязательным этапом созревания белка, в противном случае он оказывается функционально неактивным. Посттрансляционные модификации могут быть как широко распространёнными, так и уникальными. Универсальная модификация -убиквитинирование (присоединение к белку цепи из нескольких молекул короткого белка убиквитина), которое служит сигналом к расщеплению этого белка протеасомой. Другой распространённой модификацией является гликозилирование. К редким модификациям относят тирозинирование/детирозинирование и полиглицилирование тубулина. Один и тот же белок может подвергаться многочисленным модификациям. Посттрансляционные модификации делят на: модификации главной цепи; отщепление N-концевого остатка метионина; ограниченный протеолиз — удаление фрагмента белка, которое может происходить с концов (отщепление сигнальных последовательностей) или, в отдельных случаях, в середине молекулы; присоединение различных химических групп к свободным амино- и карбоксильной группам (N-ацилирование, миристоилирование); модификации боковых цепей аминокислот; присоединение или отщепление небольших химических групп (гликозилирование, фосфорилирование); присоединение липидов и углеводородов; изменение стандартных аминокислотных остатков на нестандартные (образование цитруллина); образование дисульфидных мостиков между остатками цистеина; присоединение небольших белков (сумоилирование и убиквитинирование). Шапероны. В клетках существует группа белков, функция которых — обеспечение правильного сворачивания других белков после их синтеза на рибосоме, восстановление структуры белков после их повреждения, а также создание и диссоциация белковых комплексов. Эти белки называются шаперонами. Концентрация многих шаперонов в клетке возрастает при резком повышении температуры окружающей среды, поэтому они относятся к группе Hsp (англ. heat shock proteins — белки теплового шока). 35. Фолдинг и деградация белков как компоненты регуляторных систем. Фо́лдингом белка называют процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура). Каждая молекула белка начинает формироваться как полипептид, транслируемый из последовательности мРНК в виде линейной цепочки аминокислот. У полипептида нет устойчивой трёхмерной структуры. Однако все аминокислоты в цепочке имеют определённые химические свойства: гидрофобность, гидрофильность, электрический заряд. При взаимодействии аминокислот друг с другом и клеточным окружением получается хорошо определённая трёхмерная структура — конформация. В результате на внешней поверхности белковой глобулы формируются полости активных центров, а также места контактов субъединиц мультимерных белков друг с другом и с биологическими мембранами. В редких случаях нативными могут быть сразу две конформации белка. Они могут сильно различаться, и даже выполнять различные функции. Для этого необходимо, чтобы в разных областях фазового пространства белковой молекулы существовали два примерно равных по энергии состояния, каждое из которых будет встречаться в нативной форме с соответствующей вероятностью. Для стабилизации третичной структуры многие белки в клетке подвергаются посттрансляционной модификации. Часто встречаются дисульфидные мостики между пространственно близкими участками полипептидной цепи. В фолдинге участвуют белки-шапероны. Существует четыре типа молекул, которые играют роль таких шаперонов. 1. Молекулы, обеспечивающие правильный фолдинг белков. 2. Молекулы, созданные для удержания частично свернутой молекулы белка в определенном положении. Это необходимо, чтобы система имела возможность закончить фолдинг. 3. Шапероны, разворачивающие белки с неправильной формой. 4. Шапероны, сопровождающие белки, транспортируемые через клеточную мембрану. 36. Формирование нативной трехмерной структуры белков.
ковалентные связи (между двумя остатками цистеина — дисульфидные мостики); ионные связи между противоположно заряженными боковыми группами аминокислотных остатков; водородные связи; гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы. Между уровнем вторичной структуры и атомарной пространственной выделяют ещё один уровень — мотив укладки. Мотив укладки определяется взаимным расположением элементов вторичной структуры (α-спиралей и β-тяжей) в пределах белкового домена — компактной глобулы, которая может существовать или сама по себе или входить в состав более крупного белка. 37.. Молекулярные шапероны семейств Hsp60 и Hsp70 у про- и эукариот. Двудоменные кошапероны Hsp40 служат регуляторами АТФ-азной и шапероновой активностей Hsp70. Связывание полипептидных субстратов-мишеней с Hsp70 опосредовано предварительным образованием комплексов мишень–кошаперон с участием С-концевого домена Hsp40. Считается, что от 10 до 20% вновь синтезирующихся белков как в прокариотах, так и в эукариотах подвергаются правильному фолдингу с участием системы Hsp70–Hsp40–NEF. Шаперонины (или шапероны Hsp60) – это двухкамерные бочкообразные структуры, сформированные двумя состыкованными олигомерными кольцами Hsp60, которые способны на своих противоположных поверхностях попеременно связывать и инкапсулировать белки, подлежащие рефолдингу. При этом шаперонины узнают гидрофобные кластеры белковых мишеней, находящихся в состоянии «расплавленной глобулы»– промежуточной между нативным и развернутым состояниями белка, характеризующимся ослаблением взаимодействий между боковыми группами в аминокислотной цепи. Наиболее изученным является шаперонин GroEL E. coli, функционирующий в комплексе с кошаперонином GroES. Каждая субъединица гептамерного «кольца» GroEL состоит из трех доменов: апикального, содержащего общий центр связывания ненативных белков и кошаперонина, шарнирного промежуточного и С-концевого экваториального, несущего АТФ-азный центр. Экваториальные домены обеспечивают бóльшую часть межсубъединичных контактов как внутри гептамерного кольца, так и между кольцами шаперона.
38.. Участие молекулярных шаперонов в регуляторных процессах.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 2080; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.76.174 (0.008 с.) |