Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Стадии II и III соотв-ют спорангиям на стадиях полярного деления и обволакивания преспоры материнской кл-ой и т.д.↑ ⇐ ПредыдущаяСтр 13 из 13 Содержание книги
Поиск на нашем сайте Будучи активированным путем фосфорилирования, Spo0A индуцирует транскрипцию как минимум семи генов, управляющих вступлением бактерии на путь споруляции и превращением вегетативной клетки в двухкомпатрментный спорангий. Spo0A~P(неорганический фосфор) активирует транскрипцию, связываясь с промоторами соответствующих генов и оперонов, контактируя с РНK-полимеразой основной сигма фактор σA или альтернативный σH. σH обеспечивает транскрипцию неизвестного пока гена (или генов), контролирующего полярное деление. После разделения клетки на две части в каждом из образовавшихся компартментов происходит активация компартмента специфического сигма-фактора - σF в преспоре и σE в материнской клетке. σF синтезируется до полярного деления, его активность проявляется в преспоровом компартменте, определяется регуляцией на уровне активности белка. Эта регуляция осуществляется тремя белками, SpoIIE,SpoIIAB и SpoIIAA - эти белки синтезируются в исходной клетке еще до ее полярного деления. SpoIIAB является антисигма фактором, который связывается с σF и ингибирует транскрипцию с его участием. После образования перегородки в действие вступает фермент являющийся фосфатазой, специфически дефосфорилирующей. дефосфорилирование идет с одинаковой скоростью в обоих компартментах. Но поскольку объем преспоры в 5-7 раз меньше объема материнской клетки, концентрация дефосфорилированого SpoIIAA в преспоре будет в несколько раз выше, следовательно, в этом компартменте σF будет активирован раньше. после активации σF в преспоровом компартменте происходит активация другого сигма-фактора, σЕ, в материнской клетке. Таким образом, появление σЕ в материнской клетке привязано к отделению преспоры перегородкой, поскольку транскрипция зависимых от σF генов происходит только в преспоровом компартменте. В σЕ регулон входят гены, разрушающие пептидогликан септы,отделяющей преспору от материнской клетки, а гены, контролируемые σF, отвечают за обволакивание преспоры материнской клеткой. К моменту окончания поглощения преспоры материнской клеткой в преспоре начинается транскрипция нового гена, spoIIIG, кодирующего сигма-фактор, σG. Этот сигма-фактор активирует транскрипцию поздних генов преспоры, необходимых для завершения процесса споруляции. Экспрессия поздних генов в материнской клетке находится под контролем сигма-фактора σK - синтезируется в виде неактивного предшественника пре-σK, который превращается в активную форму после отщепления амино-концевой последовательности из 20 АК остатков. Экспрессия двух сигма-факторов в материнской клетке запускает последовательную цепь регуляторных событий, ведущую к поочередной активации и инактивации комплекса генов, результатом работы которого является синтез споровых покровов, кортекса и внешней оболочки споры 86. Секреция белков. Сходство и различия секреторных аппаратов про- и эукариот. 87. Сигналы секреции и внутриклеточной локализации белков: общие принципы. 88.Секреция белков у прокариот: Sec-аппарат, системы секреции I-IV типов (организация, субстратспецифичность, регуляция). 89.Отличие секреции белков у прокариот и эукариот. секреция – транспорт белка в окружающую среду. Секретируемые белки могут оказываться в различных местах: • быть полностью встроенными в цитоплазматическую мембрану (интегральные мембранные белки, каковыми является большинство мембранных транспортеров); • быть "заякоренными" в цитоплазматической мембране при помощи трансмембранного гидрофобного сегмента (практически всегда N-концевого), к этому классу принадлежит большинство периплазматических белков; • полностью находиться в периплазме; • быть полностью встроенными во внешнюю мембрану (порины); • заякориваться во внешней мембране так, что основная масса белка располагается либо снаружи (чаще всего) либо в периплазматическом пространстве; • во внешней среде (собственно секретируемые белки, к которым принадлежит большинство гидролитических ферментов патогенов); • ассоциированными с мембраной эукариотической клетки (некоторые компоненты аппарата секреции III типа) • внутри другой клетки, как правило эукариотической (большинство субстратов секреции III и IV типов) место конечной дислокации белка определяется его аминокислотной последовательностью – секреторные системы распознают определенные консервативные последовательности (мотивы) и направляют секретируемый белок в соответствии с записанной в этих мотивах информацией. В клетках млекопитающих все секретируемые белки направляются в эндоплазматический ретикулум при помощи одного механизма, SRP("частица, распознающая сигналы"). Эукариотическая SRP – крупный рибонуклеопротеидный комплекс, состоящий из 6 полипептидов и молекулы РНК Сначала 54 kDa субъединица SPR узнает специфические гидрофобные сигналы сразу после того, как они выходят с транслирующей рибосомы. Такими сигналами являются либо N-концевые отрезаемые сигнальные последовательности либо первый трансмембранный сегмент. Как только SPR связывается с сигналом локализации, комплекс рибосома-мРНК-полипептид мигрирует к эндоплазматическому ретикулуму, где взаимодействие между SPR и гетеродимером рецептора SPR катализирует высвобожбение синтезирующегося полипептида из комплекса и его инсерцию в транслокационный канал. У прокариот интегральные мембранные и прочие секретируемые белки движутся к внутренней мембране по различным путям. Интегральные мембранные белки направляются к внутренней мембране при помощи бактериального варианта "частица, распознающая сигналы" (SPR). У бактерий SRP состоит всего из двух компонентов: белка Ffh - гомолога SPR54 и более короткой РНК. многие секретируемые белки направляются к аппарату секреции молекулярными шаперонами, такими как DnaK или (чаще) SecB. Первая стадия реакции требует присутствия специфичных для секреции шаперонов - SecB и рибонуклеотидного комплекса SRP, который состоит из белка Ffh и 4.5S РНК. SecB и SRP узнают каждый свою часть секретируемых белков. Функция SRP наиболее существенна при экспорте интегральных мембранных белков. Выбор SRP или SecA/SecB пути происходит "на выходе" синтезирующейся белковой цепи из рибосомы. Бактериальная SRP распознает белки внутренней мембраны по их протяженным трансмембранным сегментам. Секреторные шапероны распознают более короткие и менее гидрофобные трансмембранные сегменты сигнальных пептидов и направляют содержащий их белок к секреторному аппарату. секреторная системама – обеспечивает прохождение через гидрофобную мембрану длинной полипептидной цепи, содержашей значительные гидрофильные участки, в нативном состоянии свертутой в громоздкую структуру. транспорт идет по градиенту концентрации, и поэтому все секреторные системы расходуют энергию АТФ. Секреторные шапероны GroE/DnaK участвуют только в процессе секреции, и их функцией является задержка фолдинга секретируемых белков. Большинство секретируемых белков являются глобулярными и в полностью свернутом виде они просто не в состоянии преодолеть мембрану. Секреторные шапероны, связываются с предназначенным для секреции белком сразу же после его схода с рибосомы и не дают ему принять окончательную конформацию. Секреторный шаперон фактически доставляет белок с рибосомы к секреторному аппарату. Секреторыные шапероны экономят энергию для разворачивания белка. эукариоты не имеют секреторных шаперонов потому что,секреция белка у них сопряжена с трансляцией – синтезируемая белковая цепь сразу, не успев принять свою нативную конформацию, попадает в секреторный канал. Прокариоты не могут воспользоваться таким механизмом, поскольку у них рибосомы присутствуют в огромном избытке по отношению к мембранным транслоказам (у эукариот такого избытка нет из-за большей поверхности эндоплазматического ретикулума).
|
||
Последнее изменение этой страницы: 2016-04-26; просмотров: 386; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.22.204 (0.008 с.) |