Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принципы транскрипционной регуляции↑ Стр 1 из 13Следующая ⇒ Содержание книги
Поиск на нашем сайте
Промоторы эукариот: размеры, положение, структура и механизм распознавания различными РНК-полимеразами. В соответствии с биохимическими критериями промотор представляет собой последовательность нуклеотидов, обеспечивающую базальный (но не максимальный) уровень транскрипции соответствующего транскриптона. Он является той минимальной последовательностью, которая специфически распознается холоферментом РНК-полимеразы среди случайных последовательностей нуклеотидов. Бактериальный промотор содержит две канонические последовательности: в области -35 и в области -10. Промотор эукариотических генов, узнающийся РНК-полимеразой промотор содержит два базовых регуляторных элемента: ТАТА-последовательность (положение -25) и специфическую нуклеотидную последовательность, обогащенную пиримидинами в положении -75. Основной элемент промотора - место связывания РНК-полимеразы, которое она занимает перед началом синтеза РНК. В состав промоторов могут входить также участки связывания белков-регуляторов. У эукариот регуляторные элементы собраны в регуляторные регионы. Основной регуляторный элемент эукариот – это коровый (базальный) промотор. Он обеспечивает сборку базального транскрипционного комплекса (из основных факторов транскрипции и РНК-полимеразы) и инициацию транскрипции на базальном (исходном, базовом) уровне. Часто этот уровень так низок, что приводит к синтезу лишь единичных молекул РНК и, в дальнейшем, белков.
Промоторные элементы, контролирующие точку инициации и интенсивность транскрипции. Промоторы, узнаваемые РНК-полимеразой II, содержат три различных семейства регуляторных последовательностей ДНК. Последовательности первого семейства включают так называемые коровые, или базальные элементы промотора, расположенные вблизи точки инициации транскрипции. В настоящее время известны два класса базальных элементов: TATA-последовательность, расположенная за 25–30 нуклеотидов до точки инициации (каноническая последовательность – TATAa/tAa/t), и так называемый инициатор (Inr), последовательность которого обогащена пиримидинами. Элементы TATA-последовательности и инициатор необходимы для сборки ДНК-белкового инициационного комплекса и распознаются основными факторами транскрипции. Промоторы РНК-полимеразы II содержат один или оба регуляторных элемента или же не имеют их вообще. При этом оба элемента могут функционировать независимо друг от друга или же в их действии наблюдается синергизм. К двум другим классам цис- регуляторных промоторных элементов у эукариот относятся последовательности, расположенные вблизи промотора (от 50 до нескольких сотен пар оснований перед точкой инициации), а также дистальные элементы (энхансеры и сайленсеры), расстояние которых от промотора может превышать 60 т.п.о. Оба класса таких последовательностей содержат сайты связывания регуляторных белков, модулирующих транскрипцию. У некоторых промоторов, в частности ассоциированных с генами домашнего хозяйства, может отсутствовать явно выраженная TATA-последовательность. Проксимальные и дистальные регуляторные элементы промоторов построены из коротких транскрипционных элементов длиной в 10–15 п.о., с которыми непосредственно взаимодействуют факторы транскрипции. Проксимальные регуляторные элементы, как правило, имеют простую структуру, включающую один или несколько транскрипционных элементов (ТЭ).
Транскрипционный контроль Регуляторная часть гена эукариот включает цис-регуляторные элементы (промотор, который граничит с открытой рамкой считывания гена) и транс- регуляторные элементы (энхансеры, сайленсеры, аттенюаторы и инсуляторы) которые расположены далеко от кодирующей части гена (на расстоянии миллионов пар нуклеотидов). В составе генов эукариот есть много регуляторных элементов. Для генов, которые экспрессируются конститутивно (то есть с постоянной скоростью), достаточно лишь наличие участков для связывания общих факторов транскрипции. Для генов, скорость экспрессии которых изменяется, существуют участки, связывающие регуляторные белки (специфические факторы транскрипции, репрессоры).
14. Стадии инициации транскрипции. Инициация транскрипции — сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности и от наличия или отсутствия различных белковых факторов. Инициация транскрипции начинается со сборки на промоторе прединициационного комплекса, в состав которого входят молекулы РНК-полимеразы и матричной ДНК. Если в случае РНК-полимеразы E. coli и других прокариот для осуществления этого процесса нет необходимости в присутствии других белковых факторов, то механизм сборки инициационного комплекса с участием РНК-полимеразы II носит более сложный характер. В настоящее время существуют две модели инициации транскрипции РНК-полимеразой II. В соответствии с одной из них на промоторе происходит постепенная (ступенчатая) сборка инициационного комплекса из отдельных компонентов. Другая модель акцентирует внимание на то, что Pol II может входить в состав инициационного комплекса в виде холофермента, состоящего из многих субъединиц. Сборка такого комплекса начинается с последовательного связывания с промотором основных факторов транскрипции. Обычно факторами транскрипции называют белки или белковые комплексы, непосредственно не участвующие в каталитическом акте образования РНК, но необходимые для прохождения основных этапов транскрипции и ее регуляции. По функциональному признаку принято различать три класса факторов транскрипции. К первому классу относятся основные факторы транскрипции, обеспечивающие нерегулируемый базальный уровень транскрипции и функционирующие в клетках всех типов. Ко второму классу относятся факторы транскрипции, специфически взаимодействующие с определенными последовательностями ДНК, которые являются основными регуляторами транскрипции и обеспечивают тканеспецифическую экспрессию генов. И, наконец, третий класс факторов 14транскрипции (в том числе многочисленные TAF-белки (TAB-associated factors)) представлен недавно открытыми белками – коактиваторами транскрипции, которые действуют согласованно с основными и тканеспецифическими факторами, обеспечивая более тонкую регуляцию транскрипции.
Понятие о регулоне. Некоторые группы структурных генов объединены в регулоны – совокупности координированно экспрессирующихся генов, контролирующих одну определенную функцию (этапы расщепления или синтеза какого-либо вещества). Гены в регулоне пространственно отдалены друг от друга. Каждый ген имеет собственные промотор, оператор и терминатор транскрипции. В некоторых регулонах часть генов объединена в опероны (например аргининовый регулон состоит из шести отдельных генов и двух оперонов). Некоторые опероны (и регулоны), контролирующие синтез аминокислот, содержат ещё один тип регуляторных элементов – аттенюаторы. Аттенюатор – это нуклеотидная последовательность с инвертированными повторами, расположенная между промотором и первым геном оперона. Вторичная структура аттенюатора изменяется в зависимости от наличия или отсутствия в клетке аминокислоты, синтез которой контролируется данным опероном (или регулоном). В аттенюаторе закодирован пептид, содержащий несколько, расположенных друг за другом, аминокислотных остатков данной аминокислоты. Когда концентрация аминокислоты в клетке в результате её синтеза (или поступления извне) достаточно высокая, происходит синтез аттенюаторного пептида. В результате изменяется вторичная структура ДНК в аттенюаторе таким образом, что транскрипция оперона прекращается. (Аттенюатор, таким образом, приобретает характер терминатора). При низкой концентрации аминокислоты в клетке пептид не синтезируется и структура аттенюатора не мешает транскрипции.
31-32. Сенсорные системы
Для бактерий (как, впрочем, и для любого другого организма) способность координировать экспрессию генов с изменениями условий окружающей среды дает существенное селективное преимущество. Адаптация бактерий к изменяющимся условиям среды контролируется белковыми системами передачи сигнала. Такие системы состоят из белковых модулей-доменов, собранных в несколько молекул, количество которых варьирует в зависимости от вида бактерии и конкретного фактора среды. Основными компонентами сенсорных систем являются: · сенсоры (трансмембранные или цитоплазматические), детектирующие изменения окружающих условий; · внутриклеточные посредники, получающие информацию от сенсоров и передающие ее на эффекторы; · эффекторы - непосредственные регуляторы физиологического ответа (как правило, на уровне транскрипции). Трансмембранные рецепторы. Механизм детекции сигнала не совсем ясен. Детектируемый сигнал может быть как вне-, так и внутриклеточным. В некоторых случаях показано, что сигнал детектируется периплазматическим доменом. Так, PhoQ - регулятор экспрессии факторов вирулентности у Salmonella typhimurium, - является сенсором дивалентных катионов, которые, связываясь непосредственно с периплазматическим доменом, стабилизируют неактивную конформацию PhoQ. Сигнал может быть внутриклеточным. Рецептор Aer, участвующий в регуляции аэротаксиса, детектирует внутриклеточный запас энергии, связываясь с FAD. Еще один пример – детекция внутриклеточной концентрации глутамина при регуляции азотного метаболизма. В ряде случаев показано, что сенсором является трансмембранный домен. Так, Cpx-путь активирован у мутантов E. coli, лишенных фосфатидилэтаноламина - таким образом, простое нарушение мембранной структуры приводит к активации этого сигнального пути. У белка EnvZ E. coli - гистидинкиназы, участвующей в осморегуляции, периплазматический домен может быть делетирован без потери сенсорной функции. Механизм передачи сигнала. Многие бактериальные рецепторы имеют периплазматический домен-детектор (P) и цитоплазматический сигнальный домен (C), заякоренные в мембране двумя α-спиральными трансмембранными сегментами. Линейная структура таких белков может быть представлена как TM1–P–TM2–L–C, где L - цитоплазматический линкер. Сигнальный домен либо сам является гистидинкиназой (EnvZ) либо с гистидинкиназой взаимодействует (MCP рецепторы хемотаксиса). Механизм передачи сигнала с сенсорного на сигнальный домен неясен. Рецепторы обычно являются мембранными белками, гомодимерами. Предполагалось, что конформационные изменения, возникающие при связывании субстрата, передаются через мембрану на цитоплазматические домены рецептора, что влияет на взаимодействие сигнальных доменов между собой. Однако делеция одного из двух сигнальных доменов (равно как и удаление всех трансмембранных сегментов) у димера не лишает его активности. Двухкомпонентная система состоит из двух белков –гистидиновой протеинкиназы (ГК), содержащей консервативный киназный домен и регулятора ответа (РО), содержащего консервативный регуляторный домен. Внеклеточные сигналы детектируются ГК, что приводит к изменению ее активности. Затем ГК передает фосфогруппу на РО (реакцию катализирует сам РО). Перенос фосфата на РО приводит к активации эффекторного домена этого белка, что и вызывает в конечном итоге специфический физиологический ответ.
Регуляторный домен. Наиболее консервативная часть белка, содержит кластер остатков аспартата, которые связывают Mg2+ и формируют активный сайт для переноса фосфата Эффекторный домен Эффекторным доменам сложно дать общую характеристику по причине их большогоразнообразия. Большинство эффекторных доменов имеет ДНК-связывающую активность и действиет путем активации или репрессии транскрипции специфических генов. Тем не менее, узнаваемые последовательности ДНК, расположение сайтов связывания и механизм транскрипционной регуляции существенно различаются, даже у РО из одного подсемейства. Сенсоры: Линкерный домен У трансмембранных ГК периплазматический сенсорный домен соединяется с цитоплазматическим киназным ядром при помощи трансмембранной α-спирали и цитоплазматического линкера. Линкерные домены совершенно необходимы для нормального функционирования сенсорных ГК, однако об их функциях известно немного. Размер линкеров варьирует в пределах 40-180 АК. Многие из них имеют характерный α-спиральный coiled coil мотив, в большинстве случаев предшествующий фосфорилируемому гистидиновому остатку киназного ядра. Две наиболее вероятные функции линкерных доменов – правильное расположение мономеров в димере ГК и передача сигнала от сенсорной к киназной части белка. Каталитическое киназное ядро. Унифицирующим структурным свойством семейства ГК является характерное киназное ядро, состоящее из домена димеризации и АТФ/АДФ-связывающего фосфотрансферного или каталитического домена. Киназное ядро имеет размер ~350 АК и отвечает за связывание АТФ и осуществление киназной реакции. Консервативный остаток гистидина, являющийся субстратом киназной реакции, располагается в домене димеризации. HPt-домены у прокариот встречаются исключительно в составе гибридных киназ, тогда как у эукариот – как отдельные белки. Эти домены имеют размер около 120 АК и содержат остаток гистидина, способный участвовать в фосфотрансферных реакциях. HPt-домены не имеют ни киназной, ни фосфатазной активности, поэтому они идеально приспособлены для коммуникации между различными белками. При всем разнообразии первичных последовательностей HPt-доменов их третичная структура очень схожа и напоминает таковую домена димеризации киназного ядра, включая расположение консервативного гистидинового остатка. Сенсорный домен Изменения в окружающей среде детектируются непесредственно (или опосредованно) аминоконцевым сенсорным доменом ГК. Между разнообразными мембранными сенсорными доменами практически полностью отсутствует сходство на уровне первичной последовательности, что поддерживает идею о специфичности детектируемых ими взаимодействий. В большинстве случаев специфический стимул и механизм его детекции остаются неизвестными. Информация о трехмерной структуре этих доменов начинает появляться только сейчас, поэтому как сигнал передается к киназному ядру, пока не ясно. 51. Архитектура регуляторных систем соответствующий адаптивный ответ. Фосфотрансляционные системы Еще более усложненные версии двухкомпонентных систем используют более одного акта передачи фосфата. Такие сигнальные пути называют фосфотрансляционными системами (системами передачи фосфата). В простейшем случае фосфотрансляционная система удлиняет цепочку передачи фосфата на два шага, Asp -> His и His -> Asp. Таким образом, базовая фосфотрансляционная система имеет уже четыре фосфорилированных белковых продукта и пять реакций переноса фосфата. Множественные фосфорилируемые домены фосфотрансляционных систем создают возможность альтернативных путей передачи фосфата. В гибридной ГК ArcB любой из имеющихся His-содержащих доменов (димеризационный или же HPt) может получить фосфат от АТФ и передать его РО ArcA. Два различных варианта используются в аэробных и анаэробных условиях. Еще более сложная организация может достигаться за счет интеграции различных сигнальных цепочек в сигнальные сети. У B. subtilis практически каждая двухкомпонентная система взаимодействует с как минимум еще одной цепочкой передачи фосфата. В качестве примера такой интеграции можно привести взаимодействие путей, контролирующих утилизацию фосфата аэробного и анаэробного дыхания и споруляцию. Дыхание и утилизация фосфата регулируются совместно – фосфо-PhoP активирует экспрессию ResD и наоборот. Однако, когда клетка вступает на путь споруляции, и дыхание, и утилизация фосфата репрессируются, поскольку фосфо-Spo0A негативно регулирует фосфорилированные ResD и PhoP.
Хемотаксис у бактерий
"память", которая и позволяет измерять изменение концентраций лиганда. Если выбранное направление движения соответствует увеличению концентрации аттрактанта (снижению концентрации репеллента), время до следующего кувыркания увеличивается. К сожалению, из-за своего малого размера клетка постоянно сбивается с "верного" пути броуновским движением и поэтому просто не может продолжительно двигаться прямо. Такой механизм поэтому только в общем обеспечивает движение бактерии по градиенту концентрации в нужном направлении, но для бактерий является достаточно эффективным. Механизм, основанный на переключении направления вращения жгутиков, приводящий к прямолинейному движению, которое через варьирующие промежутки времени сменяется кувырканием на месте, не является единственным. У Rhodobacter sphaeroides вращение единственного жгутика сменяется его полной остановкой, а у Rhizobium meliloti вращение жгутика никогда не прекращается – изменяется только его скорость. Но во всех этих случаях результат работы сенсорной системы хемотаксиса один и тот же – если бактерия движется в "нужном" направлении, продолжительность такого движения увеличивается. Сенсорный механизм хемотаксиса более сложен, чем рассмотренные нами ранее. Это объясняется прежде всего двумя причинами. Во-первых, поскольку броуновское движение может очень быстро изменить ориентацию бактериальной клетки, клетки должны обрабатывать хемотаксические сигналы очень быстро, и, действительно, от стимула до переключения "моторов" у клетки проходит не более 0.2 секунды. Во-вторых, для правильного сравнения пространственных градиентов клеткам необходимо такое устройство сенсорного механизма, которое "гасило" бы сенсорную стимуляцию в статических условиях, т.е. в отсутствии градиента концентрации, как бы много какого-то аттрактанта или репеллента ни присутствовало бы в среде.
4. Устройство и принцип действия двигательного аппарата бактерий Движение бактерий рассмотрим на примере E. coli.Эта бактерия передвигается за счет вращения своих жгутиков, которые действуют как винты корабля.Каждая бактерия может иметь 6 или более "винтов", разбросанных по поверхности клетки случайным образом. Хотя каждый "винт" вращается независимо, но при вращении против часовой стрелки нити жгутиков сближаются за счет гидродинамических сил и образуют пучок, вращающийся в одну сторону позади клетки. Вращение против часовой стрелки приводит к более-менее прямолинейному поступательному движению бактерии, тогда как вращение по часовой стрелке заставляет бактерию кувыркаться на месте. В результате при последующем переключении направления вращения жгутика бактерия начнет двигаться в случайном направлении. В однородной среде бактерия кувыркается примерно раз в секунду.Нить жгутика является тонкой ровной трубкой, созданной из уложенных спирально молекул одного единственного белка – флагеллина. Длина жгутикового филамента варьирует и может достигать10 длин тела бактерии. Нить жгутика прикрепляется к базальному телу при помощи полого гибкого крюка. Крюк прикреплен к оси – полой прямой трубке, составляющей основу ротора жгутика. Ось окружена тремя кольцами – двойным MS кольцом, находящимся в цитоплазматической мембране ислегка выступающим из нее, P кольцом в слое пептидогликана и L кольцом в наружной мембране.Специфическая для компонентов жгутика система секреции III типа, располагающаяся в базальном теле, транспортирует через мембрану белки оси,крюка и нити в правильной последовательности и внужных количествах. Секретируемые компоненты поступают к месту сборки формирующегося жгутика через полость в его центре.Вращение жгутика обеспечивается молекулярным мотором, способным переключатьнаправление вращения.Источником энергии для работы мотора служит трансмембранный протонный градиент. Моторно-переключательный комплекс крепится на цитоплазматической стороне MS кольца и образуетколоколообразную структуру, известную как C-кольцо. Этот комплекс содержит три белка (FliG,FliM и FliN), участвующие в генерации вращательного монента и переключении направления вращения. Считается, что этот комплекс вращается вместе с MS кольцом, осью,крюком и нитью. Статор мотора сделан из двух белков, окружающих MS кольцо. Карбоксиконцевой домен одного из этих белков, MotB, закреплен в клеточной стенке, а четыре гидрофобных спирали MotA взаимодействуют с аминоконцевой мембранной α-спиралью, образуя проводящий протоны канал через цитоплазматическую мембрану.
55. Регуляция синтеза жгутикового аппарата Более 40 генов, кодирующих белки,необходимые для биосинтеза жгутиков,организованы в несколько оперонов. Естественно,что экспрессия такого количества генов находится под строгим контролем. Контроль в данном случае организован иеархически. На вершине иерархии находится flhDC оперон, кодирующий два белка, из которых собирается гетеротетрамерный активации транскрипции генов второго "уровня". Многие глобальные регуляторы, такие, например, как БАК, DnaA, связанный с нуклеоидом белок H-NS,влияют на уровень экспрессии оперона flhDC и на образование жгутиков.Транскрипция генов первых двух уровней обеспечивается РНК-полимеразой с основным сигма-фактором (RpoD). Продуктами генов второго уровня являются белки,входящие в составбазального тела жгутика и крюка, а также регуляторные белки FlgM и FliA. FliA кодирует альтернативный сигма-фактор σ28 или σ F,необходимый для экспрессии генов третьего, и последнего уровня, а FlgM является анти-сигма фактором, ингибирующим активность FliA. Когда секреторный аппарат (базальное тело жгутика) и крюк собираются, FlgM экспортируется из клетки и освобождает FliA, который наконец может активировать поздние гены жгутика.
56. Белковый аппарат хемотаксиса. Рецепторы хемотаксиса. Три класса белков участвуют в хемотаксисе: трансмембранные рецепторы, цитоплазматические сигнальные белки и ферменты адаптивного метилирования. • аминоконцевой трансмембранной спирали, • периплазматического собственно сенсорного домена, сложенного из четырех α−спиральных участков, • второй трансмембранной спирали • большого цитоплазматического сигнального и адаптационного домена. Цитоплазматические домены сенсоров содержат 4 или 5 остатков глутамата, доступных для метилирования.
57. Цитоплазматические сигнальные белки и регуляторный механизм хемотаксиса ♦ CheY – РО(регулятор ответа) ♦ CheW - "адаптор" между рецептором и CheA ♦ CheZ - белок, способствующий дефосфорилированию CheY~Ф
58. Компоненты сигнальных путей (рецепторы, G-белки, адаптеры, эффекторы, вторичные мессенджеры).
59. Киназы как компоненты сигнальных путей, типы протеинкиназ.
60. Способы передачи сигнала через клеточную мембрану 1. Сигнальные молекулы, взаимодействующие с внутриклеточными рецепторами. Наиболее известными представителями являются стероидные (кортизол, эстрадиол, тестостерон) и тиреоидные (тироксин) гормоны. Пройдя через плазматическую мембрану, они связываются с белками, находящимися в цитозоле или ядре. Указанные рецепторные молекулы представляют собой генные регуляторные белки (gene regulatory proteins),изначально находящиеся в клетке в неактивном состоянии. Под действием гормонов они претерпевают большие конформац
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 883; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.154.217 (0.015 с.) |