Частотное регулирование скорости вращения АД.




ЗНАЕТЕ ЛИ ВЫ?

Частотное регулирование скорости вращения АД.



Необходимо отметить, что частотное регулирование является наиболее целесообразным, эффективным и перспективным способом, регулирования АД с кз ротором и кроме того единым способом регулирования СД.

В настоящее время этим способом регулируют ЭП мощностью от нескольких Вт до 10-ти МВт и напряжением от 220 В до 10 кВ.

 

Принципы и законы частотного регулирования.

При изменении частоты напряжения питающего статора, изменяется угловая скорость ВМП , при этом и соответственно изменяется скорость вращения вала двигателя . При изменении частоты скольжения изменяется, следовательно, и жесткость характеристик практически не будет изменяться. Если принять с некоторой долей погрешности , что напряжение на фазе обмотки статора численно равна ЭДС..

- обмоточный коэффициент

- число витков статорной обмотки

- частота напряжения статора

Предположим, что с целью уменьшения угловой скорости необходимо уменьшить частоту Однако уменьшение частоты при неизменном действующем значении напряжения приведёт к тому что поток увеличится. При увеличении потока больше потока насыщения резко увеличится ток х.х. двигателя, что приведёт к перегреву двигателя. Если же нам требуется увеличивать угловую скорость, то для этом необходимо увеличить частоту, что при , приведёт к уменьшению потока, и как следствие двигатель будет недогружен по нагреву, при этом уменьшится его КПД и коэффициент мощности , в результате двигатель будет потреблять большое количество реактивной мощности и оказывать вредное «загрязняющее» влияние на сеть. Т.о. при частотном регулировании с целью поддержания постоянства магнитного потока. При одновременном изменении частоты, необходимо изменять напряжение.

При этом соотношение напряжения и частоты зависит от вида производственного механизма. Для механизмов с постоянным статическим моментом статического сопротивления наиболее целесообразным соотношением напряжения и частоты является соотношение:

Такой закон регулирования называется пропорциональным.

Для механизмов со статическим моментом сопротивления:

(генератор ПТсНВ) : .

Для турбомеханизмов, у которых , оптимальным вариантом является:

.

С точки зрения оптимальности частотного регулирования – наиболее целесообразным видом является турбомеханизмы . Однако за частую, с целью упрощения системы управления ЭП при регулировании использует пропорциональный закон.

Рассмотрим классификацию методов и технических средств применяемых при частотном регулировании. В общем случае схема частотного регулирования имеет следующий вид:

 

Рис.117

 

По структуре преобразования частоты различают:

1. Преобразователи с непосредственным преобразованием частоты НПЧ (однозвенное)

2. Преобразователи частоты промежуточным звеном постоянного тока ПЧсПЗПТ (двухзвенные).

В настоящее время НПЧ как правило используются в качестве вспомогательного преобразовательного блока, а основным видом преобразователей являются преобразователи частоты с промежуточным звеном постоянного тока. Процесс преобразования электрической энергии с напряжением и частотой питающей сети в электрическую энергию с изменяемыми напряжением и частотой осуществляется в 2-а этапа:

1. Электрическая энергия переменного тока с напряжением и частотой питающей сети преобразуется в электрическую энергию постоянного пульсирующего тока.

2. Электрическая энергия постоянного тока преобразуется в электрическую энергию переменного тока с изменяющимися напряжением и частотой.

 

По способу преобразования различают:

Электромашинный ПЧ

а. СЭМПЧ (синхронный электрошинный ПЧ), основным элементом, которого является синхронный 3-х фазный генератор.

б. АЭМПЧ (асинхронный электрошинный ПЧ), основным элементом которого является асинхронный 3-х фазный генератор.

2. статические преобразования частоты СПЧ (вентильные) элементная база которых включает в себя использование силовых ключей (тиристоров или транзисторов). Рассмотрим структур статического2-х звенного СПЧ

 

Рис.118

 

1. – управляемый или неуправляемый выпрямитель предназначен для преобразования 3-х фазного переменного напряжения с частотой и напряжением сети в постоянное с изменяющимся или не изменяющимся действующим значением.

2. – фильтр, предназначен для сглаживания пульсации напряжения или тока с выхода выпрямителя и .

3.- инвертор, предназначен для преобразования постоянного сглаженного напряжения в переменное 3-х фазное с изменяющимся частотой и напряжением.

В том случае если блок 1 управляемый, то инвертор изменяет только частоту, в случае если 1 –неуправляемый, инвертор изменит и частоту, и амплитуду напряжения.

БУВ – блок управления выпрямителем.

БУН – блок управления инвертором

БЗС – блок задания скорости

В настоящее время использование выпрямительных схем на входе ЭП строго регламентируется. В этом плане значительно предпочтительней является схема, в которой в качестве блока 1 используется неуправляемый выпрямитель.

В этом случае инвертор, который должен регулировать как частоту, так и напряжением управляется либо по принципу ШИР, либо по принципу ШИМ. С точки зрения влияния на питающую сеть они равноценны, однако с точки зрения влияния на двигатель предположительно инверторы с ШИМ (широтно- импульсная модуляция), т.к. они позволяют воздействовать кроме напряжения и частоты, на форму выходного напряжения, которая, в идеале является синусоидальной.

Механические характеристики при частотном регулировании имеет следующий вид:

- естественная

Рис.119

 

Показатели качества:

· направления двузонное и вверх и вниз от основной частоты

· плавность - высокая

· стабильность - высокая, т.к. наклон регулировочных характеристик, по отношению к естественной, практически не изменяются

· допустимая нагрузка, целесообразна чаще регулировать при постоянном моменте

· энергетическая эффективность зависит от структуры преобразователя, а также технических средств, с помощью которых он реализован.

· (практически не ограничен).

Т.О. к основным достоинствам частотного регулирования АД Можно отнести:

1. высокие показатели качества

2. минимальная установленная мощность системы по сравнению с другими видами регулирования (не превышает 200% )

· как следствие наилучшие массогабаритные показатели

· возможность применения в любых производствах

· высокая степень автоматизации.

К общепринятым недостаткам частотного регулирования можно отнести:

· большое потребление реактивной мощности, низкий и как следствие «загрязнение» питающей сети.

· прямоугольность формы выходного напряжения и тока, т.е. наличие высоких гармоник и, как следствие, большие потери в двигателе.

В известной степени избавиться от 1-го недостатка является применение частотных преобразований с широтно- амплитудным регулированием (ШИР). В этом случае в структуре преобразователя в качестве входного элемента используют не управляемый выпрямитель не , а инвертор выполняет функции изменения выходного напряжения и по частоте и по амплитуде.

 

Различают 3 вида ШИР:

1. ШИР на выходе инвертора, представляющий из себя высокочастотный силовой ключ установленный перед инвертором.

2. ШИР на выходе инвертора, установленный на зажимах двигателя.

3. ШИР в самом инверторе. В этом случае часть силовых ключей входящих в инвертор работает в продолжительном режиме с периодами коммутации , связанных с выходной частотной , а другая часть силовых ключей входящих в состав инвертора работает в импульсном режиме, то выходное напряжение будет складываться из высокочастотной последовательности импульсов одинаковой ширины и амплитуды и при этом если длительность (ширину) импульса обозначать , а промежуток между 2-мя соседними импульсами , то:

то при этом .

Рис.120

 

Однако при этом форма тока и напряжения продолжается оставаться существенно не синусоидальной и, кроме того, в рассмотренной системе в качестве ШИР используют силовые ключи, мощность которых должна быть согласованна с мощностью самого двигателя, поэтому такие преобразователи применяют только в частотных ЭП малой и средней мощности.

Избавиться одновременно от 2-х указанных недостатков позволяет применение ЧП. с ШИМ. В таких преобразователях используются инверторы позволяющие регулировать выходное напряжение и по частоте и по амплитуде, а так же придавать ему необходимую форму.

 

Принцип ШИМ рассмотрим с помощью электрической схемой замещения.

Рис.121

На схеме замещения сглаженное напряжение на выходе фильтра поочерёдно с помощью высокочастотного силового ключа подключается к сопротивлению нагрузки ( - одна фаза статорной обмотки).

Если ключ замкнуть в положение 1, то работает верхняя половина источника питания. Если замкнуть в положении 2, то работает нижняя половина источника питания. Ток направлен противоположно . Если обозначить - длительность замкнутого ключа в положении 1, а длительность замкнутого ключа в положении 2, обозначим , то если = , .Если соотношение между и , представленное в виде:

изменяется по закону синуса, то :

где - называется несущая глубина модуляции, а , -несущий период., модуляции, - несущая глубина модуляции .

Т.о, изменяя глубину модуляции можно воздействовать на амплитуду выходного напряжения , изменяя несущую частоту модуляции на выходную частоту. При этом выходное напряжение будет складываться из высокочастотной последовательности импульсов одинаковых по амплитуде , но различных в зависимости от формы выходного напряжения, по ширине импульсов.

В настоящее время частотные преобразователи с ШИМ находят широкое применение при частотном регулировании. При этом энергетические показатели таких приводов следующие:

Рис.121

 





Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.221.159.255 (0.014 с.)