Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей). Все связи можно разделить на несколько типов.
Связь — гладкая опора (без трения). Реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре (рис. 1.7). Гибкая связь (нить, веревка, трос, цепь). Груз подвешен на двух нитях (рис. 1.8). Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута. Жесткий стержень. На схемах стержни изображают толстой сплошной линией (рис. 1.9). Стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи. Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент наложенными на него связями.
Убираем стержень 1, в этом случае стержень 2 падает вниз. Следовательно, сила от стержня 1 (реакция) направлена вверх. Убираем стержень 2. В этом случае точка А опускается вниз, отодвигаясь от стены. Следовательно, реакция стержня 2 направлена к стене.
Шарнирная опора Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров. Подвижный шарнир. Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки) (рис. 1.10). Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, т. к. не допускается только перемещение поперек опорной поверхности. Неподвижный шарнир. Точка крепления перемещаться не может. Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Её принято изображать ввиде двух составляющих: горизонтальной и вертикальной (Rx, Ry) (рис. 1.11). Защемление или «заделка». Любые перемещения точки крепления невозможны. Под действием внешних сил в опоре возникают реактивная сила и реактивный момент МR, препятствующий повороту (рис. 1.12). Реактивную силу принято представлять в виде двух составляющих вдоль осей координат R = Rx + Ry Примеры решения задач Последовательность решения задач:
Пример 1. Груз подвешен на стержнях и канатах и находится в равновесии (рис. 1.13). Изобразить систему сил, действующих на шарнир А.
Решение 1. Реакции стержней направлены вдоль стержней, реакции гибких связей направлены вдоль нитей в сторону натяжения (рис. 1.13, а). 2. Для определения точного направления усилий в стержнях мысленно убираем последовательно стержни 1 и 2. Анализируем возможные перемещения точки А. Неподвижный блок с действующими на него силами не рассматриваем. 3. Убираем стержень 1, точка А поднимается и отходит от стены, следовательно, реакция стержня 1 направлена к стене. 4. Убираем стержень 2, точка А поднимается и приближается к стене, следовательно, реакция стержня 2 направлена от стены вниз. 5. Канат тянет вправо. 6. Освобождаемся от связей (рис. 1.13, б).
Пример 2. Шар подвешен на нити и опирается на стену (рис. 1.14а). Определить реакции нити и гладкой опоры (стенки). Решение 1. Реакция нити — вдоль нити к точке В вверх (рис. 1.14, б). 2. Реакция гладкой опоры (стенки) — по нормали от поверхности опоры.
Пример 3. Представим, что на горизонтально расположенный брус АБ, собственной массой которого пренебрегаем, действует вертикальная нагрузка F, приложенная в точке С бруса (рис. 1.14-1, а). Левый конец бруса А прикреплен к опоре шарниром, а правый В опирается на гладкую наклонную плоскость. Изобразим брус схематично отрезком АВ, как на рис. 1.14-1, б, и приложим к нему в точке С вертикальную силу F. В точке В со стороны наклонной плоскости к брусу приложена ее реакция RB, направленная перпендикулярно плоскости; линии действия сил F и RB пересекаются в точке О. Кроме этих сил на брус действует еще одна сила — реакция шарнирно-неподвижной опоры. А так как брус находится в равновесии, то линия действия третьей силы также пройдет через точку О, т. е. реакция R шарнир-но-неподвижной опоры направлена вдоль отрезка АО. Примененный здесь метод рассуждения называется принципом освобождения тела от связей и замены связей их реакциями. Пример 4. Определить усилие в стержне CD и силу давления груза А на опорную плоскость EF (рис. 1.14-2, а). Массой стержня CD, блока К, каната и трением каната о блок пренебречь. Решение Натяжение каната во всех его точках одинаково и равно силе тяжести груза В, так как неподвижный блок изменяет только направление силы, действующей на канат. Рассмотрим равновесие системы: стержень CD и блок К с прилегающим к нему отрезком каната ML. Отбросим связи и заменим их действие соответствующими реакциями (рис. 1.14-2, 6). Для полученной системы сил можно составить только одно уравнение равновесия:
На рис. 1.14-2, в показаны силы, действующие на груз А с прилегающим к нему отрезком каната ОН. REF — реакция опорной плоскости. Так как груз А находится в равновесии, то
откуда Rеf = Pa – Рв = 600 – 400 = 200 Н.
Сила давления груза А на опорную плоскость RA показана на рис, 1.14-2, г. Очевидно, RA = REF = 200 H (сила действия равна силе противодействия).
Пример 5. Определить реакции стержней, удерживающих грузы F1 = 70 кН и F2 = 100 кН (рис. а). Массой стержней пренебречь.
Решение 1. Рассматриваем равновесие шарнира В (рис. а). 2. Освобождаем шарнир В от связей и изображаем действующие на него активные силы и реакции связей (рис. б). 3. Выбираем систему координат, совместив ось у по направлению С реакцией R2 (рис. б) и составляем уравнения равновесия для системы сил, действующих на шарнир В:
3. Определяем реакции стержней R1 и R2, решая уравнения.
Подставляя найденное значение R1 в уравнение (2), получаем
Знак минус перед значением R2 указывает на то, что первоначально выбранное направление реакции неверное — следует направить реакцию R2 в противоположную сторону, т.е. к шарниру В (на рис. б истинное направление реакции R2 показано штриховым вектором).
5. Проверяем правильность полученных результатов, выбрав новое расположение осей координат х и у (рис. а). Относительно этих осей составляем уравнения равновесия: Значения реакций R1 и R2, полученные при решении уравнений (1) и (2), совпадают по величине и направлению со значениями, найденными из уравнений (3) и (4), следовательно, задача решена правильно. Контрольные вопросы и задания
1. Какая из приведенных систем сил (рис. 1.15) уравновешена?
2. Какие силы системы (рис. 1.16) можно убрать, не нарушая механического состояния тела:
3. Тела 1 и 2 (рис. 1.17) находятся в равновесии. Можно ли убрать действующие системы сил, если тела абсолютно твердые? Что изменится, если тела реальные, деформируемые? 4. Укажите возможное направление реакций в опорах (рис. 1.18).
ЛЕКЦИЯ 2
|
||||||||||||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 4914; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.176.191 (0.008 с.) |