Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 1. 13. Движение материальной точки. Метод кинетостатики

Поиск

 

Иметь представление о свободных и несвободных материаль­ных точках, о силах инерции, об использовании силы инерции для решения технических задач.

Знать формулы для расчета силы инерции при поступатель­ном и вращательном движениях, знать принцип Даламбера и уметь определять параметры движения с использованием законов динамики и метода кинетостатики.

Свободная и несвободная точки

 

Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики.

Материальные точки, движение которых ограничено связями, называются несвободными.

Для несвободных точек необходимо определять реакции связей. Эти точки движутся под действием активных сил и ограничивающих движение реакций связей (пассивных сил).

Несвободные материальные точки освобождаются от связей: связи заменяются их реакциями. Далее несвободные точки можно рассматривать как свободные (принцип освобождаемости от связей).

Сила инерции

 

Инертность — способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел.

Сила инерции — сила, возникающая при разгоне или торможе­нии тела (материальной точки) и направленная в обратную сторо­ну от ускорения. Силу инерции можно измерить, она приложена к «связям» — телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

FИН = / mа/

Таким образом, силы, действующие на материальные точки m1 и m2 (рис. 14.1), при разгоне платформы соответственно равны

Fин2 = m2 а

 

Разгоняющееся тело (плат­форма с массой т (рис. 14.1)) си­ лу инерции не воспринимает, иначе разгон платформы вообще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих: нор­мального ап и касательного at (рис. 14.2).

Поэтому при рассмотрении кри­волинейного движения могут воз­никнуть две составляющие силы инерции: нормальная и касательная

При равномерном движении по дуге всегда возникает нормальное ускорение, касательное ускоре­ние равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги (рис. 14.3).

Принцип кинетостатики (принцип Даламбера)

 

Принцип кинетостатики используют для упрощения решения ряда технических задач. Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям).

 

Даламбер предложил условно прикладывать силу инерции к ак­тивно разгоняющемуся телу. Тогда система сил, приложенных к ма­териальной точке, становится уравновешенной, и можно при реше­нии задач динамики использовать уравнения статики.

 

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равно­весии:

Порядок решения задач с использованием принципа Да­ламбера

  1. Составить расчетную схему.
  2. Выбрать систему координат.
  3. Выяснить направление и величину ускорения.
  4. Условно приложить силу инерции.
  5. Составить систему уравнений равновесия.
  6. Определить неизвестные величины.

Примеры решений задач

 

Пример 1. Рассмотрим движение платформы по шероховатой поверхности с ускорением (рис. 14.4).

Решение

Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу, становится уравновешенной, и можно составить уравне­ния равновесия. Наносим систему координат и составляем уравнения проекций сил.

 
 

где Frb — движущая си­ла; Fтр – сила трения; G — сила тяжести; R — реакция опоры; Fmi — сила инерции; f — коэффициент трения.

Пример 2. Тело весом3500 Н движется вверх по наклонной плоскости согласно уравнению S =0,16t2 (рис.14.5). Определить ве­личину движущей силы, если коэффициент трения тела о плоскость f = 0,15.

Решение

1. Составим расчетную схему, выбе­рем систему координат с осью Ох вдоль наклонной плоскости.

Активные силы: движущая, сила трения, сила тяжести. Наносим реакцию в опоре перпендикулярно плоскости. Чтобы верно направить силу инер­ции, необходимо знать направление ускорения, определить это можно по уравнению движения.

При а > 0 движение равноускорен­ное.

2. Определяем ускорение движения:

a = v' = S"; v = S' = 0,32 t; a = v' = 0,32 м/с2 > 0.

Силу Fин направим в обратную от ускорения сторону.

3. По принципу Даламбера составим уравнения равновесия:

4. Подставим все известные величины в уравнения равновесия:

Выразим неизвестную силу и решим уравнение:

Fдв = 3500 • 0,5 + 0,15 * 3500 • 0,866 + 3500 • 0,32 / 9,81 = 2318,8 Н.

 

Пример 3. График изменения скорости лифта при подъеме из­вестен (рис. 14.6). Масса лифта с грузом 2800 кг. Определить натя­жение каната, на котором подвешен лифт на всех участках подъема.

 

Решение

1. Рассмотрим участок 1 — подъем с ускорением. Составим схему сил (рис. 14.7). Уравнение равновесия кабины лифта:

где Т — натяжение каната; G — сила тяжести; FИH — сила инерции, растягивающая канат.

Для определения ускорения на участке 1 учтем, что движение на этом участке равнопеременное, скорость v = vo + at; v0 = 0. Сле­довательно, ускорение:

 

Определяем усилие натяжения каната при подъеме с ускорением

T1 = 2800(9,81 + 1,25) = 30968H; T1 = 30,97кН.

 

2. Рассмотрим участок 2 — равномерный подъ­ем.

Ускорение и сила инерции равны нулю. Натяже­ние каната равно силе тяжести.

T2 – G = 0; Т2 = G = тg;

Т2 = 2800 * 9,81 ≈ 28 кН.

3. Участок 3 — подъем с замедлением.

Ускорение направлено в сторону, обратную на­правлению подъема. Составим схему сил (рис. 14.8).

Уравнение равновесия: FИН3 + Т3G = 0. Отсюда

Т3 = G — FHE3 = mg — ma 3.

Ускорение (замедление) на этом участке определя­ется с учетом того, что v = 0.

+ п 5 / 2

+ оз^з = 0; а3 = - —; а3 = -- м/с.

£3 b -

Натяжение каната при замедлении до останов­ки:

Т3 = 2 800 ^9,81 - 0 = 25 144 Н; Г3 - 25,14 кН.

Таким образом, натяжение каната меняется при каждом подъеме и опускании, канат выходит из строя в результате усталости материала. Работоспособность зависит от времени.

Пример 4. Самолет выполняет «мертвую петлю» при скоро­сти 160 м/с2, радиус петли 1000 м, масса летчика 75 кг. Определить величину давления тела на кресло в верхней точке «мертвой петли».

 

1. Схема сил, действующих на летчика (рис. 14.9):

где G — сила тяжести, R — реакция в опоре, FИНп — сила инерции.

Сила давления летчика на кресло равна силе давления опоры на летчика.

Уравнение равновесия (движение равно­мерное по дуге, действует только нормальное ускорение): F"H — G — R = 0;

 

Пример 5. Жесткая рамка с грузом G массой т = 10 кг равномерно вращается с частотой n = 1200 об/мин (рис. 1.61, а). Определить реакции опор при нижнем (по­казанном на рисунке) положении груза. Массу рамки не учитывать.

Решение

 

Активной силой, действующей на рамку, является сила тяжести груза

Освободив^ рамку от связей, прикладываем к ней ре­акции опор VА и VВ (рис. 1.61,6).

Мысленно остановив рамку, прикладываем к ней в точ­ке крепления груза центробежную силу инерции

Так как рамка вращается равномерно, касательное ускорение груза равно нулю и полное его ускорение равно нормальному. Соответст­венно полная сила инер­ции равна центробежной силе инерции груза.

Нормальное ускорение направлено к оси враще­ния, сила инерции — про­тивоположно (рис. 1.61,6).

 
 

Определим величину нормального ускорения:

Сила инерции

Сила инерции и сила тяжести в заданном положении груза суммируются:

В данном случае сила тяжести значительно меньше силы инерции и, вообще говоря, можно было бы силой тяже­сти пренебречь.

Составляя уравнения равновесия

находим

 

Пример 6. По подкрановой балке (рис.1.62) пе­ремещается тельферная тележка, грузоподъемность кото­рой m = 104 кг. Определить добавочные динамические реакции опор балки при указанном на рисунке положении тележки, если тележка поднимает максимальный груз с ускорением а = 6,5 м/с2.

Решение

 

Добавочные динамические реакции V А и V в опор балки возникнут от силы инерции груза

Сила инерции на­правлена вниз, так как ускорение груза направлено вверх.

Освобождаем бал­ку от связей и заме­няем их действие реакциями V А и V в.

Составляем урав­нения равновесия:

Решая уравнения, находим:

Контрольные вопросы и задания

 

1. Объясните разницу между понятиями «инертность» и «сила инерции».

 

2. К каким телам приложена сила инерции, как направлена и по какой формуле может быть рассчитана?

 

3. В чем заключается принцип кинетостатики?

 

4. Задано уравнение движения материальной точки S = 8,6 t 2. Определите ускорение точки в конце десятой секунды движения.

 

5. Тело движется вниз по наклонной плоскости (рис. 14.10). На­несите силы, действующие на тело; используйте принцип Даламбера, запишите уравнение равновесия.

 

6. Лифт спускается вниз с ускорением (рис. 14.11). Нанесите си­лы, действующие на кабину лифта, используя принцип кинетостати­ки, запишите уравнения равновесия.

 

7. Автомобиль въезжает на арочный мост с постоянной скоро­стью v (рис. 14.12). Нанесите силы, действующие на автомобиль в середине моста, используя принцип кинетостатики, запишите урав­нения равновесия.

 

8. Ответьте на вопросы тестового задания.




Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 6652; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.205.181 (0.007 с.)