Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Чувствительность глаза к светуСодержание книги
Поиск на нашем сайте
Нейрофизиологические опыты показали, что при увеличении интенсивности света учащаются импульсы, идущие от рецепторов сетчатки, причем интенсивность света выражается в частоте импульсов. Очень сложна регистрация электрической активности рецепторов глаза позвоночных, потому что у них сетчатка «вывернута наизнанку», так что электроды не могут достичь рецепторов без больших повреждений. К тому времени, когда импульсы достигают зрительного нерва, они усложняются, благодаря взаимосвязям нервных клеток, расположенных в различных слоях сетчатки. Регистрируя нервные импульсы от зрительного нерва через разное время темновой адаптации, мы обнаружим, что их количество меняется. Если графически выразить соотношение между длительностью темновой адаптации и количеством нервных импульсов, отводимых от зрительного нерва, то окажется, что частота импульсов увеличивается, когда глаз находится в темноте более длительное время. Это соответствует нашему собственному ощущению увеличения яркости света после нахождения в темноте. Что происходит, когда мы смотрим на источник очень слабого света в темной комнате? Можно было бы думать, что, если нет света, отсутствует и активность, передающаяся от сетчатки в мозг; когда появляется какой-нибудь свет, сетчатка сигнализирует о нем и мы его видим. Но опыты показывают, что все не так просто. При полном отсутствии света сетчатка и зрительный нерв не являются полностью инактивными. В них всегда имеется нервная активность, которая доходит до мозга, даже если отсутствует какая-либо стимуляция глаза светом. Об этом говорит непосредственная регистрация активности зрительного нерва глаза кошки, полностью адаптированного к темноте, и мы имеем все основания предположить, что это справедливо и по отношению к глазу человека и других животных. Наличие постоянного фонового уровня спонтанной активности имеет большое значение. Глаз удивительно чувствителен, мы можем видеть вспышку света столь незначительную, что ее трудно зарегистрировать каким-либо искусственным прибором. Однако глаз был бы еще более чувствителен, если бы не было спонтанной активности зрительной системы, которая представляет собой постоянную проблему для мозга. Являются ли нервные импульсы, приходящие в мозг, результатом воздействия света на глаз или же это спонтанный «ш у м» зрительной системы? Проблема заключается в решении вопроса о том, отражает эта нервная активность внешнее раздражение или это только «шум», который следует игнорировать. Глаз использует некоторые приспособления, уменьшающие влияние «шума» и значительно повышающие длительность периода, в течение которого происходит интеграция сигнала.
Иногда мы видим вспышки, которых на самом деле нет. По-видимому, они появляются вследствие «шума», превосходящего некоторый уровень, но это случается нечасто. Определение уровня, выше которого активность оценивается как ответ на реальное воздействие, используется для оценки надежности данной чувствительной системы. Существуют доказательства того, что этот уровень может колебаться и зависит от «установки». Абсолютный порог различения света также определяется наименьшим сигналом, который может быть надежно выделен из случайного «шума» зрительной системы, существующего и при отсутствии воздействия света на глаз. То, что сказано выше по поводу восприятия интенсивностей света, применимо к нервной системе в целом. Все это справедливо не только для различения интенсивностей света, но также и в отношении абсолютного порога различения света в темноте. 208 Глава IV. Психофизиология зрительного восприятия 'А Сетчатка 209
3. Сетчатка Сетчатка является удивительной структурой, преобразующей свет в нервные сигналы. Она позволяет нам видеть в условиях тьмы и света, различать длины волн (что дает нам возможность видеть цвета), обеспечивает точность, достаточную, чтобы заметить соринку с расстояния в несколько метров. Общая характеристика Сетчатка — это часть мозга, отделившаяся от него на ранних стадиях развития, но связанная с ним посредством зрительного нерва. Сет- ■ чатка имеет форму пластинки толщиной приблизительно в 0,25 мм. Она состоит из трех слоев нервных клеток, разделенных двумя слоями синапсов, образованных аксонами и дендритами клеток. Термин «сетчатка» происходит от латинского слова «ретина» (сетка, паутина) и объясняется наличием густой сети кровеносных сосудов, которые ее покрывают. Сетчатка — это тонкий слой взаимно связанных между собой нервных клеток, светочувствительных колбочек и палочек, которые превращают свет в электрические импульсы — язык нервной системы. Не всегда было очевидно, что сетчатка — это первая ступень зрительного пути. Греки думали, что сетчатка снабжает стекловидное тело питанием. Гален (II в. н.э.) впервые предположил, что сетчатка участвует в зрительных процессах, однако позже многие ученые приписывали эту функцию хрусталику. Арабские ученые средних веков, хранители классических знаний, рассматривали сетчатку в качестве проводника жизненных духов, или «пневмы».
Впервые определил действительную функцию сетчатки немецкий астроном И. Кеплер (1604), указав, что она является экраном, на котором создается изображение, преломляющееся в хрусталике. Эта гипотеза была экспериментально подтверждена другим немецким астрономом К. Шейнером (1625). Он удалил внешнюю оболочку (склеру и кровеносную оболочку глаза, расположенную между склерой и сетчаткой) глаза быка, оставляя сетчатку, которая представала перед ним в виде полупрозрачной пластинки. На ней К. Шейнер увидел маленькое перевернутое изображение. Открытие фоторецепторов было сделано позднее. Только в 1835 г. фоторецепторы были впервые описаны немецким естествоиспытателем Г. Тревиранусом, хотя и недостаточно точно. По-видимому, его наблюдения были основаны на собственных предположениях, так как он сообщил, что фоторецепторы обращены к свету. У млекопитающих и почти у всех позвоночных рецепторы находятся в заднем слое сетчатки, позади кровеносных сосудов. Это означает, что свет должен пройти через сеть кровеносных сосудов и тонкую сеть нервных волокон, включающих три слоя нервных клеток и множество соединительных клеток, прежде чем он достигнет фоторецепторов. Оптически сетчатка вывернута наизнанку. При таком расположении фоторецепторов в сетчатке, которое, видимо, является результатом ее закономерного эмбрионального развития из внешнего мозгового листка, нервные волокна располагаются на периферии и освобождают критическую, центральную часть сетчатки для лучшего видения. Два места сетчатки заслуживают особого упоминания. Первое — это место вхождения зрительного нерва в глазное яблоко. На нем нет ни палочек, ни колбочек, и мы им ничего не видим. Поэтому оно и называется слепым пятном сетчатки. Слепое пятно имеет овальную форму с более длинным вертикальным диаметром. По горизонтали оно занимает около 1,3—1.8 мм, чему соответствует угол около 6—6,5°; на слепом пятне могут уместиться около 11 изображений полной луны. По горизонтальному меридиану от центральной ямки сетчатки слепое пятно занимает пространство приблизительно с 12 до 18°. В обыденной жизни мы не замечаем вызываемых слепым пятном пробелов в поле зрения, во-первых, в силу того, что изображение в другом глазе падает вне слепого пятна, и, во-вторых, в силу невольного заполнения этих пробелов образами соседних частей поля зрения. Второе особое место на сетчатке — это желтое пятно, или фовеа. Число палочек и колбочек различно в разных частях сетчатки: в самом центре, где возможность зрения различать тонкие детали максимальна, имеются только колбочки. Это и есть желтое пятно. Это место наиболее ясного видения; оно располагается ближе к виску и вверх от места вхождения зрительного нерва — слепого пятна. Желтое пятно заполнено по преимуществу колбочками. Желтое пятно имеет удлиненную по горизонтали, овальную форму; наибольший диаметр желтого пятна определяется разными учеными по-разному (от 2,9 до 0,6 мм). В середине желтого пятна в сетчатке имеется углубление. Диаметр его — около 0,4 мм или в угловых величинах около 1,7°. Эту лишенную палочек зону длиной примерно полмиллиметра называют центральной ямкой. В ней обнаружены только колбочки, причем здесь они расположены очень тесно друг к другу и имеют более тонкую и удлиненную форму, делающую их морфологически похожими на палочки. Отличие заключается в том, что в их наружных члениках отсутствует зрительный пурпур. Диаметр внутреннего членика фове-альной колбочки равняется, по определениям разных авторов, от 0,0015 до 0,0035 мм, длина же доходит до 0,1 мм. На месте централь-
14-1015 210 Глава [V Психофизиология зрительно!о восприятия 3 Сетчатка 211
ной ямки сетчатка делается значительно тоньше (около 0,1— 0,08 мм) за счет сокращения прочих сетчаточных слоев, сводящихся здесь главным образом лишь к слою колбочек. В области центральной ямки каждая колбочка соединена с отдельной биполярной клеткой и, может быть, с отдельной ганглиозной клеткой. Слой клеток на задней поверхности сетчатки содержит светочувствительные рецепторы — палочки и колбочки. Палочек значительно больше, чем колбочек. Они ответственны за наше зрение при слабом свете и отключаются при ярком освещении. Колбочки не реагируют на слабый свет. Они ответственны за способность видеть тонкие детали и за цветовое зрение. Два вида светочувствительных клеток — палочки и колбочки — названы так в соответствии с их видом под микроскопом. В периферических отделах сетчатки они четко различимы, однако в центральной области фоторецепторы расположены чрезвычайно плотно и имеют вид палочек. У человека колбочки функционируют в условиях дневного света и являются аппаратом цветного зрения. Палочки функционируют при слабом освещении и обеспечивают только восприятие оттенков серого. Дневное зрение, осуществляемое с помощью колбочко-вого аппарата сетчатки, обозначается как «фотопическое», в то время как восприятие оттенков серого палочковым аппаратом при тусклом освещении называется «скотопическим». Каким образом стало известно, что у человека и некоторых животных колбочки и только колбочки обеспечивают цветное зрение? К та-| кому выводу пришли отчасти на основании изучения глаз различным животных и сопоставления структуры сетчатки со способностью этик животных различать цвета, что устанавливается в результате изуче-г ния их поведения; этот вывод был сделан также из того факта, что на периферии сетчатки человеческого глаза очень мало колбочек, щ именно эта область сетчатки не различает цветов. Интересно, чт<У хотя центральная фовеальная область сетчатки, где колбочки распоч ложены особенно плотно, дает наилучшее зрительное восприятие д&* талей и цветов, она оказывается менее чувствительной, чем периферическая часть, которая заполнена более примитивными палочками (астрономы предпочитают пользоваться не центральной, а периферической частью сетчатки при наблюдении самых отдаленных звезд; делая так, они стараются, чтобы изображение попадало на ту область сетчатки, которая богата палочками).
Можно сказать, что, двигаясь от центра человеческой сетчатки к периферии, мы оказываемся на более ранних этапах эволюции, переходя от наиболее высоко организованных структур к примитивному глазу, который различает лишь простое движение теней. Края челове- ческой сетчатки не дают даже зрительного ощущения; когда они стимулируются движущимся объектом, они вызывают только рефлекторный поворот глаз к этому объекту, после чего глаз воспринимает его наиболее высокоорганизованной частью сетчатки. Размеры фоторецепторов и плотность их расположения являются важным фактором, определяющим способность глаза различать мелкие детали. Центральная область сетчатки, где колбочки приблизительно одинаковой ширины, равна примерно 100 мкм1 в поперечнике. Она содержит приблизительно по 50 колбочек в ряду. Эта область по форме похожа на эллипс, причем длинная ось его расположена горизонтально и содержит около 2000 колбочек. Размеры каждой из этих колбочек равны в среднем 24". Размеры элементов на сетчатке различны, однако самые большие центральные элементы вряд ли больше 20" или даже меньше. Самых маленьких клеток, т.е. наименьших функциональных рецепторных единиц, очень немного, порядка одного-двух десятков. Размер этих единиц включает и оболочки, отделяющие соседние колбочки друг от друга. Стоит попытаться представить себе размеры фоторецепторов. Самые маленькие из них величиной в 1 мкм, что равно приблизительно двойной длине волны красного света. Вряд ли можно рассчитывать на более тонкую организацию глаза, чем эта. И все же острота зрения ястреба в четыре раза выше, чем острота зрения человека. Светочувствительный пигмент сетчатки под влиянием яркого света обесцвечивается; и это обесцвечивание стимулирует нервные волокна; для того, чтобы фотохимические процессы вернулись в исходное состояние, требуется некоторое время. Когда в определенной области сетчатки светочувствительный пигмент «обесцвечивается», то она (эта область) становится менее чувствительной, чем окружающие ее отделы. Это и приводит к появлению последовательных образов. Когда глаз адаптировался к яркому свету (например, при пристальном взгляде на яркую лампу или особенно — на фотографическую вспышку), возникает темный, парящий в пространстве контур такой же формы, как и вызвавший его источник света. Этот образ будет темным, если смотреть на освещенную поверхность, например стену, но если находиться в темноте, тогда в течение нескольких первых секунд после вспышки он будет казаться ярким. Это явление называется положительным последовательным образом, оно свидетельствует о наличии продолжающегося возбуждения сетчатки и зрительного нерва после стимуляции. Темный образ называется отрицатель-
Отгрсч mikion — малое, единица длины, равная 10 ьм 14* 212 Глава IV Психофизиология зрительного восприятия 3 Сетчатка 213
ным последовательным образом и является результатом снижения чувствительности освещенной части сетчатки вследствие обесцвечивания светочувствительного пигмента. Поскольку палочки и колбочки расположены на задней поверхности сетчатки, поступающий свет должен пройти через два других слоя, чтобы воздействовать на них. Неизвестно, почему сетчатка устроена так странно — она инвертирована, так что палочки и колбочки как бы рассматривают заднюю стенку глазного яблока. Одна из вероятных причин в том, что позади рецепторов находится слой клеток, содержащих черный пигмент меланин. Меланин поглощает свет, прошедший через сетчатку, и не дает ему отражаться назад и рассеиваться внутри глаза; он играет ту же роль, что и черная окраска внутренних стенок фотокамеры. Клетки, содержащие меланин, способствуют также химическому восстановлению светочувствительного зрительного пигмента, который обесцвечивается на свету. Для выполнения обеих функций нужно, чтобы меланин находился поблизости от рецепторов. Если бы рецепторы лежали впереди, пигментные клетки должны были бы располагаться между ними и следующим слоем нервных клеток, в области, уже заполненной аксонами, дендритами и синапсами. Слои клеток, находящихся на пути света к рецепторам, достаточно прозрачны и, по-видимому, не сильно вредят четкости изображения. Однако в центральной ямке, где наше зрение наиболее остро, последствия уменьшения четкости были бы катастрофическими, и эволюция, видимо, «постаралась» смягчить их — сместила другие слои к периферии, образовав здесь кольцо утолщенной сетчатки и обнажив центральные колбочки так, что они оказались на самой поверхности. Образующееся маленькое углубление и есть центральная ямка. Двигаясь от заднего слоя к переднему, мы попадаем в средний слой сетчатки, расположенный между палочками и колбочками, с одной стороны, и ганглиозными клетками — с другой. Этот слой содержит нейроны трех видов: биполярные, горизонтальные и амакри-новые клетки. Биполярные клетки имеют входы от рецепторов и многие из них передают сигналы непосредственно ганглиозным клеткам. Горизонтальные клетки соединяют рецепторы и биполярные клетки связями, идущими параллельно сетчаточным слоям; амакриновые клетки связывают биполярные клетки с ганглиозными. Слой нейронов на передней стороне сетчатки содержит ганглиоз-ные клетки, аксоны которых проходят по поверхности сетчатки, собираются в пучок, образуют на выходе слепое пятно на сетчатке, лишенное рецепторов, и покидают глаз. Аксоны ганглиозных клеток формируют зрительный нерв. В каждой сетчатке около 125 миллионов пало- чек и колбочек, но всего 1 миллион ганглиозных клеток. Ввиду такого различия возникает вопрос: каким образом может сохраняться и обрабатываться детальная зрительная информация? Изучение связей между клетками сетчатки может помочь разрешить проблему. Можно представить себе два пути информационного потока через сетчатку: прямой путь, идущий от фоторецепторов к биполярным и далее к ганглиозным клеткам, и непрямой путь, при котором между рецепторами и биполярами могут быть включены еще горизонтальные клетки, а между биполярами и ганглиозными клетками — амакриновые клетки. Эти связи уже были весьма обстоятельно изучены С. Рамон-и-Кахалем (1900). Прямой путь весьма специфичен, или компактен, в том смысле, что одна биполярная клетка имеет входы лишь от одного рецептора или от сравнительно небольшого их числа, одна ганглиозная клетка — от одного или сравнительно немногих биполяров. Непрямой путь более диффузен, или «размыт», благодаря более широким боковым связям. Общая площадь, занятая рецепторами, связанными с одной ганглиозной клеткой по прямому и непрямому путям, составляет всего около миллиметра. Эта зона является рецептивным полем ганглиозной клетки — областью сетчатки, световая стимуляция которой может влиять на импульсацию данной ганглиозной клетки. Эта общая схема верна для всей сетчатки, но в деталях связей имеются различия между центральной ямкой, куда проецируется направление и где наша способность видеть тонкие детали максимальна, и периферией сетчатки, где острота зрения резко снижается. При переходе от центра к периферии сеть прямых путей от рецепторов к ганглиозным клеткам становится совершенно иной. В центральной ямке или около нее, как правило, одна колбочка связана с одной биполярной клеткой, а один биполяр — с одной ганглиозной клеткой. Однако по мере постепенного перемещения к внешним областям все больше рецепторов конвергируют на биполярах, а биполяров — на ганглиозных клетках. Эта высокая степень конвергенции, которую мы видим в большей части сетчатки, вместе с весьма компактными путями в самом центре и около него позволяют понять, почему, несмотря на отношение 125 к 1 между числом рецепторов и числом волокон зрительного нерва, некоторая часть сетчатки (ее центр) может все-таки обеспечивать острое зрение. Общая схема сетчаточ-ных путей с их прямым и непрямым компонентами была известна многие годы, а их связь с остротой зрения поняли задолго до того, как удалось выяснить роль непрямого пути. Ее понимание внезапно стало возможным, когда начали изучать физиологию ганглиозных клеток. 214 Глава IV. Психофизиология зрительного восприятия 3 Сетчатка 215
3.2. Фоторецепторы Прошло много лет, прежде чем был достигнут существенный прогресс в физиологии рецепторов, биполяров, горизонтальных и ама-криновых клеток. Для этого было достаточно причин: пульсация сосудов постоянно мешала попыткам удерживать микроэлектрод в одиночной клетке или рядом с ней; рецепторы, биполяры и горизонтальные клетки не генерируют импульсов, поэтому регистрация намного меньших градуальных потенциалов требует применения внутриклеточных методик; трудно с уверенностью сказать, в клетке какого типа (или рядом с какой клеткой) находится электрод. Некоторые из этих затруднений можно преодолеть надлежащим выбором животного; например, сетчатки холоднокровных позвоночных способны выживать, будучи извлечены из глаза и погружены в солевой раствор, насыщенный кислородом, и при этом отсутствие кровообращения исключает пульсацию артерий; у протея1 очень большие клетки, их активность легко регистрировать; рыбы, лягушки, черепахи, кролики и кошки — все эти животные имеют свои преимущества при исследованиях того или иного типа, поэтому при изучении физиологии сетчатки использовались разные виды. Трудность при работе с таким большим числом видов состоит в том, что детали организации сетчатки могут заметно различаться у разных животных. Кроме того, наши представления о сетчатке приматов, реакции которой трудно регистрировать, до недавнего времени в значительной мере основывались на результатах, полученных на других видах. Однако по мере преодоления технических трудностей ускоряется и прогресс исследований на приматах. В последние годы изучение реакции палочек и колбочек на свет сильно продвинулось вперед. Палочки и колбочки различаются многими свойствами, например палочки чувствительны к очень слабому свету, колбочки требуют намного более яркого освещения. Как палочки, так и колбочки содержат светочувствительные пигменты. В палочках пигмент один и тот же; колбочки делятся на три типа, каждый со своим особым зрительным пигментом. Все виды пигмента чувствительны к различным длинам световых волн (у колбочек эти различия составляют основу цветового зрения). Когда свет падает на некоторый объект, он может поглощаться, а энергия его превращаться в тепло, например, когда объект нагревается на солнце. Свет может проходить сквозь объект, если, например, на пути солнечных лучей окажется вода или стекло. Свет может отра- Род крупных саламандр жаться от зеркала или любого светлого предмета. Отраженный зеленый свет будет иметь выраженный максимум на средних длинах волн (в области зеленого цвета). Красный — в области длинных волн. Вещество, которое поглощает часть падающего на него света и отражает остальную часть, называют пигментом. Если какие-то спектральные компоненты в диапазоне видимого света поглощаются лучше, чем другие, то предмет представляется нам окрашенным. Сразу же добавим: какой именно цвет мы будем видеть — зависит не только от длины волны, но также от распределения между разными участками спектра и от свойств нашей зрительной системы. Эти явления объяснимы как с точки зрения физики, так и биологии. Каждая палочка или колбочка в нашей сетчатке содержит пигмент, поглощающий свет в каком-то участке спектра лучше, чем в других участках. Поэтому, если бы мы смогли собрать достаточное количество такого пигмента и посмотреть на него, он выглядел бы окрашенным. Зрительный пигмент обладает особым свойством: при поглощении им светового фотона он изменяет свою молекулярную форму и при этом высвобождает энергию, запуская таким образом цепь химических реакций, которые в конце концов приводят к появлению электрического сигнала и к выделению химического медиатора в синапсе. Пигментная молекула в своей новой форме, как правило, обладает совсем иными светопоглощающими свойствами, и если, как это обычно бывает, она поглощает свет хуже, чем в исходной форме, мы говорим, что она «выцветает» под действием света. Затем сложный химический механизм глаза восстанавливает первоначальную конфигурацию пигмента; в противном случае его запас быстро истощился бы. Сетчатка содержит своего рода мозаику из рецепторов четырех типов — палочек и трех типов колбочек. Каждый тип рецепторов содержит свой особый пигмент. Разные пигменты отличаются друг от друга в химическом отношении, а в связи с этим и по способности поглощать свет с различной длиной волн. Палочки ответственны за нашу способность видеть при слабом свете, т.е. за сравнительно грубую разновидность зрения, не позволяющую различать цвета. Палочковый пигмент родопсин обладает наибольшей чувствительностью в области около 510 нм, в зеленой части спектра. Пигменты колбочек трех типов имеют пики поглощения в области 430, 530 и 560 нм, поэтому разные колбочки условно называют «синими», «зелеными» и «красными». На самом деле монохроматический свет с длинами волн 430, 530 и 560 нм будет не синим, зеленым и красным, а фиолетовым, сине-зеленым и желто-зеленым. Если бы можно было стимулировать колбочки только одного типа, мы видели бы не синий, зеленый и красный цвета, а, вероятно, фиолетовый, зеле- 216 Глава IV Психофизиология зрительного восприятия 3 Сетчатка 217
ный и желтовато-зеленый. Однако приведенные выше названия колбочек широко распространены и попытки изменить укоренившуюся терминологию обычно заканчиваются неудачей. Имея максимум поглощения в зеленой области, палочковый пигмент родопсин отражает синие и красные лучи и поэтому выглядит пурпурным. Поскольку в наших сетчатках он присутствует в количествах, достаточных для того, чтобы химики смогли его выделить, он издавна получил название зрительного пурпура. Три типа колбочек имеют широкие зоны чувствительности со значительным перекрыванием, особенно для красных и зеленых колбочек. Свет с длиной волны 600 нм вызовет наибольшую реакцию красных колбочек, пик чувствительности которых расположен при 560 нм; вероятно, он вызовет также вторую, хотя и более слабую, реакцию колбочек двух других типов. Таким образом, «красная» колбочка реагирует не только на длинноволновый, т.е. «красный» свет — просто она реагирует на него лучше других колбочек. Сказанное относится и к колбочкам остальных типов. Под воздействием света в рецепторах происходит процесс, названный выцветанием. В этом процессе молекула зрительного пигмента поглощает фотон — единичный квант видимого света — и это приводит к ее химическому превращению в другое соединение, хуже поглощающее свет или, быть может, чувствительное к другим длинам волн. Практически у всех животных, от насекомых до человека, и даже у некоторых бактерий этот рецепторный пигмент состоит из белка, к которому присоединена небольшая молекула, близкая по структуре витамину А — она и представляет собой химически трансформируемую часть молекулы пигмента. Благодаря биохимическим исследованиям, стало больше известно о механизме выцветания и последующего восстановления зрительных пигментов. Большинство обычных сенсорных рецепторов — химических, температурных или механических — деполяризуется в ответ на соответствующий стимул, т.е. они реагируют на возбуждающий стимул так же, как обычные нейроны; деполяризация ведет к высвобождению медиатора из аксонных окончаний. Часто, как и в случае зрительных рецепторов, это не приводит к возникновению импульсов, вероятно, из-за очень малой длины аксона. У беспозвоночных (от усоногих раков до насекомых) световые рецепторы ведут себя таким же образом, и предполагалось, что аналогичный механизм — деполяризация под влиянием света — действует также в палочках и колбочках позвоночных. Японский нейрофизиолог Ц. Томита (1964) впервые зарегистрировал электрическую активность колбочки сетчатки рыбы в условиях разного уровня освещения. Для этого он применил внутриклеточные микроэлектроды. Потенциал покоя рецептора оказался равным примерно -50 мВ. Выяснилось, что в темноте фоторецепторы позвоночных имеют более низкий мембранный потенциал, чем обычные нервные клетки в состоянии покоя. В противоположность ожидаемому, при освещении сетчатки мембрана гиперполяризовалась и потенциал возрастал. Свет, повышая потенциал на мембране рецепторной клетки (т.е. гиперполяризуя ее), уменьшает выделение медиатора. Оказалось, что стимуляция выключает рецепторы. Отсутствие стимуляции (темнота) приводит к активации рецепторов, они деполяризуются, а деполяризация вызывает непрерывное высвобождение медиатора из окончаний аксонов (в точности так, как это происходит при стимуляции обычных рецепторов). Открытие Ц. Томита дает возможность понять и объяснить, почему волокна зрительного нерва у позвоночных высоко активны в темноте: спонтанную активность проявляют именно рецепторы, а биполярные и ганглиозные клетки участвуют в переработке сигналов, поступающих от рецепторных клеток. Главные задачи дальнейших исследований заключались в том, чтобы выяснить, как свет вызывает гиперполяризацию рецептора и каким образом выцветание всего одной молекулы зрительного пигмента под действием одного фотона может привести в палочке к измеримому изменению мембранного потенциала. В настоящее время оба процесса достаточно хорошо изучены и поняты. Гиперполяризация на свету вызывается перекрытием потока ионов. В темноте часть рецепторной мембраны более проницаема для ионов натрия, чем остальная часть мембраны. По-видимому, ионы натрия непрерывно входят здесь в клетку, а где-то в другом месте ионы калия выходят наружу. Он вызывает деполяризацию покоящегося рецептора и тем самым — его постоянную активность. В результате выцветания зрительного пигмента на свету поры для натрия закрываются, темновой ток уменьшается и степень деполяризации мембраны становится меньше — клетка гиперполяризуется и ее активность ослабевает. В настоящее время, благодаря биофизическим исследованиям, намного больше стало известно о связи между выцветанием пигмента и закрытием натриевых каналов. Например, установлено, как выцветание единственной молекулы пигмента может привести к закрытию миллионов пор, что необходимо для наблюдаемых изменений потенциала. В настоящее время выяснилось, что поры в рецепторе открываются с помощью молекул вещества — циклического гуанозинмоно-фосфата (цГМФ). Выцветание молекулы зрительного пигмента приводит к целому каскаду событий. Белковая часть обесцвеченной молекулы пигмента активирует большое число молекул фермента трансдуцина, а каждая из них в свою очередь инактивирует сотни мо- 218 Глава IV. Психофизиология зрительного восприятия 3. Сетчатка 219
лекул цГМФ, обычно участвующих в открытии пор. Так, в результате выцветания одной молекулы пигмента закрываются миллионы пор. Эти открытия позволяют объяснить ряд явлений, казавшихся загадочными: во-первых, стало понятно, почему человек, адаптировавшийся к полной темноте, способен увидеть такую слабую вспышку света, при которой ни один рецептор не может получить более одного фотона. Расчеты показали, что для ощущения вспышки нужно, чтобы в короткий промежуток времени световой стимуляции подверглись около шести близко расположенных палочек. Становится понятно, как одиночный фотон может возбудить палочку и заставить ее генерировать сигнал достаточной силы. Во-вторых, теперь можно объяснить, почему палочки не могут реагировать на изменения освещенности при ее достаточно высоком фоновом уровне. Опыты показывают, что чувствительность палочек столь высока, что при сильной освещенности (например, при солнечном свете) все натриевые поры закрыты, и дальнейшее усиление света не может дать никакого дополнительного эффекта. Это и есть явление насыщения палочки.
|
|||||||||
Последнее изменение этой страницы: 2021-01-09; просмотров: 80; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.206.19 (0.02 с.) |