Пластмассы горячего отверждения, выпускаемые промышленностью 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Пластмассы горячего отверждения, выпускаемые промышленностью



Харьковский завод медицинских пластмасс и стоматологических материа­лов (ныне АО «СТОМА») изготавливает следующие акриловые материалы типа порошок—жидкость горячего отвержде­ния.

Этакрил применяется для изготовле­ния базисов протезов при частичных де­фектах зубных рядов и беззубых челюс­тях, а также для ортодонтических целей. Порошок — тройной сополимер метил­метакрилата, этилметакрилата и метил-акрилата (соотношение мономеров 89, 8 и 2% соответственно), пластифициро­ванный (1% дибутилфталата - ДБФ) и окрашенный в розовый цвет в процес­се полимеризации. Порошок замутнен оксидом цинка, жидкость — смесь метил­метакрилата и этилметакрилата в соот-


ношении по массе 3:1, ингибированная гидрохиноном или дифенилолпропаном (ДФП). В этакриле использован прин­цип внутренней пластификации за счет введения звеньев метилакрилата.

Акрел — пластмасса для базисов проте­зов, имеющая трехмерную структуру. По­рошок — суспензионный ПММА, окра­шенный красителями и пластифициро­ванный ДБФ (3%) в процессе синтеза. Замутнен ZnO (1,3%) или ТЮ2 (0,5%). Жидкость — метилметакрилат, содержа­щий сшивагент метилолметакриламид СН2 = (CH3)CO-NHCH2OH и ингиби­тор. Трехмерная структура образуется при полимеризации формовочной мас­сы. Акрил обладает более высокой твер­достью, меньшим водопоглощением, по­вышенной теплостойкостью.

Бесцветная пластмасса применяется для изготовления базисов зубных проте­зов, а также для других целей ортопеди­ческой стоматологии. Порошок — сус­пензионный ПММА, содержащий тину-вин, который придает пластмассе цвето-стойкость и предохраняет ее от старения под окисляющим действием кислорода воздуха. Жидкость — ингибированный метилметакрилат.

Фторакс применяется для изготовле­ния базисов зубных протезов. Порошок фторакса — привитый сополимер метил­метакрилата (ММА) к фторкаучуку и фтористого винилидена в соотноше­нии 1:2.

Протезы, изготовленные из фторакса, обладают высокими физико-механиче­скими свойствами, хорошо противостоят знакопеременным нагрузкам, а по цвету и полупрозрачности хорошо имитируют ткани полости рта.

Акронил применяется для изготовле­ния базисов зубных протезов, челюстно-лицевых и ортодонтических аппаратов, съемных шин при пародонтозе и других целей. Порошок акронила — привитый сополимер ММА к поливинил этил ал ю.


Глава 15. Основные конструкционные материалы



 


Привитый сополимер получают в про­цессе суспензионной полимеризации 5% раствора поливинилэтилаля в ММА. Су­спензионный порошок представляет со­бой смесь ПММА и привитого сополи­мера.

Жидкость — метилметакрилат, содер­жащий в качестве сшивагента деметак-рилат триэтиленгликоля, ингибитор и антистаритель. Акронил отличается хо­рошими прочностными свойствами, низким водопоглощением и долговре­менной прочностью.

Бакрил — новый материал для базисов зубных протезов, разработанный ХЗМП и СМ совместно с ЦНИИ стоматологии (Воскресенская И.Б. и др.). Бакрил — вы­сокопрочный базисный материал, отли­чающийся устойчивостью к растрескива­нию, истираемости и высоким значени­ем ударной вязкости. Порошок бакрила представляет собой модифицированный эластомерами в процессе суспензионной полимеризации ПММА. В качестве мо­дификатора используются низкомолеку­лярные сополимеры бутилакрилатного каучука, аллилметакрилата (АМА) и ММА. Модификатор состоит из ядра и оболочки. Ядро представляет собой бу-тилакрилатный каучук, «подшитый» ал-лилметакрилатом, оболочка — сополи­мер ММА и АМА. Продукт полимериза-


ции — это гетерогенная система, в кото­рой частички эластичной фазы диспер­гированы в стеклообразной матрице. Жидкость бакрила — ингибированный ДФП метилметакрилат (рис. 15.2).

Стом-Акрил. В России в 1999 г. была разработана полимерная композиция на основе сополимеров акриловой кислоты первого типа (горячей обработки), пер­вого класса (порошок + жидкость), кото­рая в стоматологии используется как конструкционный материал (ISO 1567), в частности для изготовления базисов съемных зубных протезов. Разработчика­ми являются коллективы сотрудников ЗАО «СтомаДснт» (пос. Томилино Мос­ковской области) и Института органиче­ского синтеза «Ярсинтез» (Ярославль). Комитетом по новой технике МЗ РФ эта пластмасса рекомендована к производ­ству, в 2000 г. начат промышленный вы­пуск пластмассы «Стом-Акрил».

Пластмасса выпускается в традицион­ном виде: порошок и жидкость. Порошок — суспензионный сополимеризат метилме­такрилат (молекулярной массой порядка 200 000-300 000) и бутилметакрилата (в соотношении около 90 и 10% соответ­ственно), пластифицированный олиго-глицеринметакрилатом, окрашенный ме­тодом опудривания неорганическим пиг­ментом, замутненный диоксидом титана.



Рис. 15.2. Пластмассы горячего отверждения, выпускаемые промышленностью.



Раздел II. Материалы, применяемые для изготовления пластиночных протезов при полной утрате зубов


 
 


Рис. 15.3. Пластмасса «Стом-Акрил», разработанная ЗАО «Стома Дент».


В качестве пигмента используется неорга­нический оксид железа. Частицы полиме­ра имеют сферическую форму средним размером 55—70 мкм. Жидкость — метил-метакрилат, ингибированный дифени-лолпропаном с добавлением сшивагента и стабилизаторов (рис. 15.3).

Проведено изучение различных физи­ко-химических свойств, возможное ток­сическое воздействие, а также влияние на указанные свойства методик и техно­логических режимов полимеризации. Исследования показали, что, изменяя методику и режимы полимеризации пластмассы, можно добиваться опти­мального соотношения физико-механи­ческих свойств при минимальном токси­ческом воздействии.

В работе Н.Н.Мальгинова (2000) пока­зано, что минимальное содержание оста­точного мономера (0,046—0,08 мг/л), ниже предельно допустимого уровня (ПДК — 0,25 мг/л), находится в пластмассе, поли­меризация которой проводилась с приме­нением СВЧ-энергии. Но при этом повы­шается хрупкость материала, ухудшаются его физико-механические свойства. Так, прочность при изгибе при СВЧ-полимери-зации снижается и составляет порядка 91 ±3 МН/м2. Снижается и модуль упруго­сти при изгибе (Е) с 2557 до 2496 МН/м2. Знание этих параметров позволяет врачу


выбрать оптимальное клиническое реше­ние. Следовательно, определяя техноло­гию полимеризации, врач может задавать различные свойства протезного материала в зависимости от требований клинической ситуации.

В работе М.В.Дикановой (2003) обос­нована и эффективность клинического применения съемных пластиночных зуб­ных протезов из отечественной базисной пластмассы «Стом-Акрил».

АКР-МВ. Применение традиционных акриловых композиций для изготовле­ния протезов методом МВ-полимериза-ции выявило нестабильность получае­мых результатов; в некоторых случаях от­мечали наличие пористости, неравно­мерность отверждения базиса протеза, особенно в области его краев.

В 2004 г. И.Я.Погоровской, Т.Ф.Сутучи-ной, В.К.Леонтьевым, К.Н.Руденко влабо-ратории материаловедения, разработок и физико-химических испытаний стомато­логических материалов ЦНИИСа создан новый акриловый материал специально для полимеризации в СВЧ-печах. Разрабо­танный базисный материал АКР-МВ по­зволяет изготавливать из него съемные зуб­ные протезы по кратковременному режиму отверждения пластмассы — 3 мин при 100% мощности, что дает возможность увели­чить производительность труда.


Глава 15. Основные конструкционные материалы




Рис. 15.4. Материалы на основе полиуретана «Денталур П» и «Денталур».


Способ полимеризации базисных ма­териалов с помощью микроволновой энергии на стоматологической установке «Дента-МВ» позволяет получить съем­ные зубные протезы с повышенной тре­щи ностой костью, размерной точностью, а также уменьшенным количеством (0,125 мг/л) остаточного мономера. При физико-механических и биологиче­ских исследованиях АКР-МВ получены лучшие показатели по сравнению с ана­логичными материалами.

М.Ю.Огородников, Ю.М. Альтер, В.А.Берестнев, Б.П.Марков, В.Ш.Пас­тернак в 2004 г. разработали композиты для изготовления базисов съемных про-


тезов и эластичного подкладочного слоя на основе полиуретана. Эти материалы получили название «Денталур» и «Дента­лур П». Материалы являются литьевыми полиуретанами. В основе получения из­делий из этих материалов лежит прин­цип жидкого формования или свободно­го литья. Для работы с «Денталуром» и «Денталуром П» необходимы специ­альные литьевые кюветы. После заливки смеси кюветы термостатируют при 90°С в течение 30 мин. Протез хорошо обраба­тывается и полируется (рис. 15.4).

По данным авторов, материал совер­шенно безвреден и по всем физико-ме­ханическим свойствам превосходит ак-



Раздел II. Материалы, применяемые для изготовления пластиночных протезов при полной утрате зубов


 


риловые пластмассы. «Денталур П» (эла­стичный подкладочный материал) хоро­шо соединяется с базисным. Авторы ука­зывают, что усадка «Денталура» значи­тельно меньше, чем у акриловых пласт­масс. Акриловые зубы хорошо соединя­ются с «Денталуром». Протезы, изготов­ленные из «Денталура», практически не подвержены поломке.

15.5. ПЛАСТИЧЕСКИЕ МАССЫ ХОЛОД­НОЙ ПОЛИМЕРИЗАЦИИ

Акриловые пластмассы холодного от­верждения представляют собой компаун­ды, самопроизвольно отверждающиеся при комнатной температуре. Полимери-зат в зависимости от состава компаунда может быть твердым или эластичным. Пластмассы холодного отверждения (ПХО) широко используются в стомато­логии для исправления (перебазирова­ния) протезов, починки протезов, изго­товления временных протезов, шин при пародонтозе, моделей, индивидуальных оттискных ложек. Прочное место завое­вали ПХО в качестве пломбировочных материалов. Пластмассы холодного от­верждения имеют ряд преимуществ пе­ред пластмассами горячего отверждения, но по некоторым показателям уступают им. Технология переработки ПХО про­ще, не требуется оборудования для на­грева, меньше изменение размеров изде­лия, меньше остаточные напряжения в изделиях, починка протеза может быть выполнена быстро в присутствии паци­ента. В некоторых случаях самотвердею­щие материалы не могут быть заменены пластмассами горячего отверждения. Вместе с тем самотвердеющие пластмас­сы уступают им по прочности, содержат большее количество остаточного моно­мера. Таким образом, пластмассы горя­чего и холодного отверждения не исклю­чают, а дополняют друг друга. Техноло­гия производства пластмасс холодного отверждения отличается от изготовления


пластмасс горячего отверждения тем, что в полимерный порошок в ходе синтеза вводят инициатор в количестве 1,5%, а в жидкость добавляют активатор.

Состав. Порошок — суспензионный гомо- или сополимер, окрашенный и за­мутненный и содержащий компонент окислительно-восстановительной систе­мы (обычно инициатор).

Жидкости пластмасс имеют следую­щий состав: 1) полимеры линейные (мо­номер или смесь мономеров, активатор ОВС, ингибитор); 2) полимеры трехмер­ной структуры (мономер или смесь мо­номеров, активатор ОВС, сшивагент, ин­гибитор). Изготовление стоматологиче­ских конструкций из полимер-мономер­ных материалов холодного отверждения протекает по схеме:

Полимер + инициатор + мономер + активатор + ингибитор ->

ОВС^

полимеризат + теплота полимериза­ции.

Свойства. Отверждение акриловых компаундов, применяемых в стоматоло­гии, обусловлено инициирующим дей­ствием окислительно-восстановитель­ной системы (ОВС). Основными компо­нентами ОВС являются инициатор и ак­тиватор. В качестве инициатора может быть использована органическая пере­кись, обычно применяют перекись бен-зоила. В качестве активатора используют различные соединения: третичные ами­ны (первичные и вторичные ингибируют процесс полимеризации), меркаптаны, производные сульфиновой кислоты, ас­корбиновую кислоту и др. Кроме иници­атора и активатора, некоторые ОВС со­держат еще промоторы.

Инициирующие процесс полимери­зации радикалы образуются при распаде перекиси бензоила. Как видно из кине­тических кривых распада перекиси бен­зоила, полученных при различных тем­пературах, скорость разложения зависит


Глава 15. Основные конструкционные материалы



 


от температуры и начинает заметно уменьшаться с момента достижения 65—75% превращения. Для эффективно­го инициирующего действия перекиси бензоила требуется нагрев до температу­ры выше 65°С, при которой начинается энергичный распад перекиси. Актива­тор снижает энергию активации распада перекиси бензоила, которая равна 126 кДж/моль, и распад перекиси начи­нается при комнатной температуре. ОВС является важнейшим критерием качества ГТХО. Эта система должна: 1) обеспечивать полноту конверсии мо­номера; 2) не вызывать изменения цве­та полимеризата под воздействием сол­нечной радиации и эндогенных процес­сов; 3) быть нетоксичной; 4) быть ста­бильной; 5) инициировать процесс по­лимеризации при минимальных кон­центрациях; 6) обеспечивать необходи­мое рабочее время. Во избежание преж­девременной полимеризации активатор обычно вводят в жидкость, а инициа­тор — в порошок.

Большое практическое значение ПХО стимулировало резкое расширение ис­следований по созданию ОВС холодной полимеризации.

Впервые третичные амины (диметила-нилин) в качестве активаторов холодной полимеризации предложили в 1943 г. Schvebel и Tromdorf. На основе этого ак­тиватора в СССР выпускались первые пластмассы ХО АСТ-1, АСТ-2, АСТ-2А и стиракрил (1952). Вскоре оказалось, что использование диметиланилина и других третичных аминов приводит к изменению цвета полимеризата. Это происходит в результате эндогенных процессов, в которых участвует амин. Strubell установил, что цвето- и свето­стойкость пластмассы зависят от приро­ды третичного амина.

ОВС на основе меркаптанов. ОВС типа перекись—меркаптан широко использу­ется для вулканизации каучуков и может


применяться для отверждения стомато­логических акриловых компаундов при комнатной температуре. Пластмасса ХО Orthofil (Великобритания) содержит ОВС типа перекись—меркаптан. В реак­ции взаимодействия перекиси с меркап­таном последний играет роль восстано­вителя.

Для создания акриловых компаундов в стоматологии в качестве активатора ис­пользуют лаурилмеркаптан C|2H25SH (синоним — додецилмеркаптан). К до­стоинствам этих ОВС надо отнести цве-тостойкость полимеризата. Применяе­мые в настоящее время ОВС не могут считаться совершенными. Поиски новых систем ведутся в двух основных направ­лениях — повышение цветостойкости и увеличение конверсии мономера.

Приготовление формовочной массы. Технология приготовления формовоч­ной массы ПХО идентична описанной. Из каждого замеса можно успеть отфор­мовать только одно изделие. При поли­меризации масса испытывает небольшое термическое расширение, поэтому дав­ление внутри формы не поднимается столь резко, как при горячей полимери­зации. При комнатной температуре по­лимеризация большинства материалов протекает за 20—30 мин. Ускорения от­верждения можно достичь погружением формы в воду, нагретую до 37°С. Приго­товляя формовочную массу, необходимо учитывать, что объемная усадка зависит от соотношения мономер/полимер и по­вышается с увеличением этого соотно­шения.

 

Мономер/полимер Объемная усадка, %
1:3 5,8
1:2 7,8
1:1,5 9,3

Линейная усадка (с учетом технологи­ческих приемов) пластмасс ХО составля-



Раздел II. Материалы, применяемые для изготовления пластиночных протезов при полной утрате зубов


 


ет в среднем от 0,15 до 0,5%. Необходимо строго соблюдать рекомендуемое ин­струкцией изготовителя соотношение порошок/жидкость.

Скорость полимеризации ПХО зави­сит от следующих факторов: 1) началь­ной температуры мономера и полимера: высокая температура (выше 30°С) вызы­вает быструю полимеризацию; при ох­лаждении (ниже 5°С) процесс резко тор­мозится, а при отрицательных темпера­турах реакция практически прекращает­ся; 2) количества и природы активатора и инициатора; 3) степени дисперсности порошка и его молекулярной массы: чем мельче порошок и чем ниже молекуляр­ная масса, тем быстрее идет набухание и полимеризация; 4) соотношения моно­мер/порошок. Уменьшение соотноше­ния мономер/порошок сокращает время полимеризации. Избыток мономера за­медляет процесс, но при этом наблюда­ется более высокая температура полиме-ризата и увеличивается усадка, которая заканчивается через 3 ч. Процесс поли­меризации, как уже отмечалось, экзотер-мичен. Теплота полимеризации мономе­ра ММА составляет 78,7 кДж/моль.

При смешении порошка с жидкостью образовавшаяся формовочная масса со­храняет пластичность и температура за­метно не повышается. Индукционный период в точке А переходит в бурный процесс развития реакции полимериза­ции, и температура быстро повышается. После завершения отверждения темпе­ратура полимеризата понижается за счет отдачи тепла окружающей среде. Темпе­ратурный скачок и продолжительность индукционного периода, определяющего жизнеспособность компаунда, зависят от массы полимеризующейся полимер-мо­номерной смеси, окислительно-восста­новительной системы и начальной тем­пературы жидкости и порошка. С увели­чением массы до 50 г наблюдается резкое возрастание температурного скачка. За-


висимость теплового эффекта от величи­ны полимеризующейся массы имеет следствием более высокую конверсию мономера в толстых частях изделия (про­теза и др.). Это значит, что тонкие участ­ки изделия имеют относительно мень­шую механическую прочность, посколь­ку содержат большее количество оста­точного мономера. В связи с тем что тем­пература при полимеризации ПХО ниже 100°С (температура кипения мономера 100,3°С), полимеризаты отличаются от­сутствием пор и раковин, вызываемых кипением мономера. В зависимости от вида работы формовочная масса исполь­зуется на различных стадиях набухания.

I стадия — песочная. Она появляется
сразу после смешивания порошка с жид­
костью и в зависимости от температуры
окружающей среды может продолжаться
от 30 с до 5 мин и более. При температу­
ре 10°С она продолжается около 5 мин,
при 15—18°С — 3 мин, при 18—22°С -
1—2 мин и при 25°С завершается через
0,5—1 мин. В песочной стадии мономер-
полимерная смесь непригодна к исполь­
зованию.

II стадия — вязкая, тянущихся нитей.
Начальный период этой стадии характе­
ризуется появлением тянущихся нитей,
липкостью массы, высокой пластичнос­
тью и текучестью. В начале II стадии на­
бухания формовочную массу используют
для работ, требующих адгезии. Нанесен­
ная на базис протеза формовочная масса
после отверждения образует прочное со­
единение.

III стадия — тестообразная. Формо­
вочная масса в этой стадии набухания ха­
рактеризуется потерей липкости, хоро­
шей пластичностью и меньшей текучес­
тью. В таком состоянии формовочную
массу удобно формировать на гипсовых
моделях, готовя защитные небные плас­
тинки, замещающие, формирующие
и обтурирующие протезы, шины Порта,
индивидуальные ложки, ортодонтиче-


Глава 15. Основные конструкционные материалы



 


ские аппараты и другие стоматологиче­ские конструкции. Массу можно исполь­зовать для перебазировки протезов во всех случаях, а также при необходимости получения отпечатка рельефа протезного ложа в условиях функционирующих про­тезов, когда необходимо развитие значи­тельного жевательного давления.

IV стадия — резиноподобная. На этой стадии формовочная масса сохраняет приданную ей форму даже при незначи­тельном кратковременном механическом воздействии на нее. Протез при переба­зировке удаляют из полости рта, когда формовочная масса находится уже в ре-зиноподобной стадии. В случае перебази­рования частичных протезов с наличием конвергирующих и дивергирующих зубов в полости рта или зубов с хорошо выра­женными экваторами протезы выводят из полости рта только по достижении ре-зиноподобного состояния. Удаление в III стадии набухания повлечет за собой ис­кажения из-за оттяжки. Если пропустить IV стадию, пластмасса затвердеет и про­тез без распиливания нельзя будет вывес­ти из полости рта. При контроле отвер­ждения полимеризующейся массы необ­ходимо обращать внимание на более тон­кие участки протеза, так как они отвер-ждаются медленнее толстых. Необходимо отметить, что полимеризация мономер-полимерной системы от начала смешива­ния до отверждения представляет собой непрерывный процесс без резких меж­стадийных переходов.

Оптимальный режим прессования изде­лий из пластмасс холодного отверждения. Основным методом переработки ПХО, обеспечивающим получение высококаче­ственного изделия, является прессование. Важный технологический параметр пере­работки ПХО — определение момента приложения давления. При приложении давления раньше требуемого времени из­делие получается с большой усадкой и не­удовлетворительным качеством поверхно-


 


Рис. 15.5.Аппарат для полимеризации пластмасс холодной полимеризации.

сти. Изделия с требуемой точностью могут быть получены лишь при резком увеличе­нии удельного давления. На рабочее вре­мя ПХО существенно влияет изменение температуры окружающей среды даже на 2—3°С, и это обстоятельство вызывает за­труднения при определении момента при­ложения давления. Применяемые спосо­бы изготовления стоматологических кон­струкций из ХО компаундов при комнат­ной температуре без давления не являют­ся оптимальными. Полимеризат менее плотный и имеет более низкие физико-механические показатели (рис. 15.5).



Раздел II. Материалы, применяемые для изготовления пластиночных протезов при полной утрате зубов


 


Одним из возможных вариантов опти­мизации технологии прессования изде­лий из ПХО является проведение конеч­ной стадии полимеризации под давлени­ем сжатого воздуха. На рисунке 15.5 изображен аппарат для полимеризации изделий из ПХО. Он представляет собой герметический сосуд, внутри которого создается давление 0,3—0,5 МН/м2 воз­духом, нагретым до 40—45°С. Внутри ап­парата имеются полки, на которые поме­щают изделия для полимеризации. Кон­троль и поддержание заданной темпера­туры осуществляются при помощи тер­мопары, сблокированной с температур­ным реле и электронагревателем. Аппа­рат можно изготовить, переоборудовав ультратермостат УТ-15.

В предварительно нагретый аппарат помещают стеллаж, на котором установ­лены гипсовые модели с изделиями из ПХО, находящимися в резиноподобной стадии. Аппарат герметизируют и созда­ют давление 0,3—0,5 МН (3—5 атм.). Дав­ление контролируют по манометру. В случае превышения давления срабаты­вает предохранительный клапан. Через


15—20 мин готовые изделия извлекают из аппарата.

Сравнительная характеристика пласт­масс горячего и холодного отверждения

ПХО по ряду показателей уступают пластмассам горячего отверждения, но это компенсируется исключительным удобством их использования и лучшей стабильностью размеров. Полимериза­ция ПХО сопровождается меньшей кон­версией мономера, поэтому они содер­жат в 5—10 раз больше остаточного моно­мера. Это приводит к более быстрому старению полимера, снижению прочно­стных характеристик. В результате выще­лачивания мономера с поверхности из­делия разрыхляется структура полимера, что приводит к изменению ряда свойств изделия. Так, при уменьшении содержа­ния мономера в полимере с 8,5 до 0,9% теплостойкость повышается с 52 до 130°С, а твердость по Бринеллю — с 70 до 194 МН/м2. ПХО (линейные) проявляют более высокую гигроскопичность (водо-поглощение >0,7 мг/см2), чем пластмас­сы горячего отверждения, и содержат


Таблица 15.2 Некоторые показатели пластмасс холодного и горячего отверждения

 

 

Свойство Акриловые пластмассы
горячего отверждения холодного отверждения
Прочность на сжатие, МН/м2 75,9 -
Модуль эластичности, МН/м2 3,8- 103 2-105
Прочность при статическом изгибе, МН/м2 190-130  
Микротвердость, МН/м2 200-270 150-200
Водопоглощение, мг/см2 0,4-0,6 0,70
Водорастворимость, мг/см2 0,02 0,025
Остаточные напряжения в изделии, МН/м2 от 0,1 до 3,5 от 0,1 до 2
Остаточный мономер, % 0,1-0,5 3,5-5,0
Цветостойкость Удовлетворительная Удовлетворительная при наличии стабилизатора
Технологичность Хорошая Отличная

Глава 15. Основные конструкционные материалы



 


большие количества остаточной переки­си бензоила, мономера, активатора, что является предпосылкой к ухудшению со временем их физико-механических свойств (табл. 15.2).

Исследования показали, что основ­ным фактором, искажающим размеры и форму протеза, является не полимери-зационная усадка, которая компенсиру­ется технологическими приемами, а тер­мическая усадка, возникающая при ох­лаждении протеза от температуры поли­меризации до комнатной. Поскольку по­лимеризация ПХО протекает при более низких температурах, чем пластмасс го­рячего отверждения, протезы и другие зуботехнические изделия, изготовлен­ные из ПХО, получаются более точными, лучше фиксируются в полости рта. Кро­ме того, в них возникают меньшие на­пряжения и, хотя по прочности они усту­пают пластмассам горячего отвержде­ния, более гибкие. Модуль эластичности у них 2'203 МН/м2, а у пластмасс горя­чего отверждения — 3,8 • 103 МН/м2. При дополнительном нагревании с выдерж­кой в течение нескольких часов можно улучшить физико-механические показа­тели изделий из ПХО за счет уменьше­ния содержания остаточного мономера.



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 1731; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.119.66 (0.059 с.)