Группа Ассура с внешней поступательной парой
На рис. 3.9, а эту группу образуют звенья 4, 5. Чтобы не повторяться, движение звеньев 1, 2, 3 предшествующего механизма считается известным. Задача состоит в определении скорости и ускорения только точки .
Рис. 3.9. Построение плана скоростей и плана ускорений для двухзвенной группы Ассура с внешней поступательной парой
Определение скорости точки . Для решения задачи вводят систему координат , движущуюся поступательно, и систему , неизменно связанную со звеном 2 предшествующего механизма. Первую из этих систем считают несущей для звена 4, вторую – несущей для звена 5. Из вытекающих отсюда разложений движения составляют уравнения:
(3.5)
До сих пор при составлении уравнений не было необходимости в указании номера звена, к которому относится та или иная точка, т. к. подразумевались шарнирные точки или просто шарниры. Теперь же этого недостаточно, и – это скорость шарнира , объединяющего точки , , а – скорость только точки , отмеченной на звене 2 и неизменно связанной с ним. Соответственно, есть скорость точки относительно звена 2.
Переносные скорости и в приведённой выше системе уравнений известны из предполагаемого анализа предшествующего механизма. Относительные скорости известны своими линиями действия, а именно: , . Всего этого достаточно, чтобы решить систему. Результат показан на рис. 3.9, б.
Определение ускорения точки . Из тех же разложений движения, что и в случае скоростей, следует:
(3.6)
Переносные ускорения и известны из предполагаемого анализа предшествующего механизма. Нормальную составляющую вычисляют по формуле . Входящую сюда скорость берут из плана скоростей. Тангенциальная составляющая перпендикулярна , величина её неизвестна.
Ускорение точки относительно звена 2 параллельно , величина его также неизвестна. Ускорение Кориолиса вычисляют по формуле . Входящая сюда скорость предполагается известной из анализа предшествующего механизма. Скорость берут из плана скоростей, её изображает вектор . Направление ускорения Кориолиса получают поворотом вектора на ° в сторону скорости . Таким образом, ускорение известно и по величине, и по направлению. На рисунке его изображает вектор .
Перед решением системы уравнений ускорение переставляют на последнее место, т. к. оно известно только линией действия. На пересечении линий действия последних слагаемых получают конец f ускорения (рис. 3.9, в).
Рассмотренный общий случай анализа цепи 4, 5 распадается на два частных. В первом случае (рис.3.10, а) эта цепь приводится в движение слева, во втором (рис. 3.10, б) – справа. Круговой стрелкой на обеих схемах отмечено звено с заданным движением.
Рис. 3.10. Частные случаи присоединения цепи 4, 5
При определении скоростей в первом случае из системы (3.5) выпадает нижнее уравнение, во втором – верхнее. При определении ускорений в первом случае из системы (3.6) выпадает также нижнее уравнение, во втором – выпадает только ускорение . Решение упростившихся уравнений не составляет труда, поэтому далее не рассматривается.
Метод кинематических диаграмм
Построение диаграмм
Этот метод применяют, когда интерес представляет положение и движение только выходного звена механизма. Пусть этим звеном является ползун 3 кривошипно-ползунного механизма, изображённого на рис. 3.11, а. Схема механизма вычерчена в масштабе. Положение ползуна характеризует координата . Её отсчитывают от одного из крайних положений этого звена, обычно – от наиболее удалённого от точки . Именно это и принято на рисунке. В крайнем положении кривошип 1 и шатун 2 вытягиваются в одну прямую . При этом , где и – длины звеньев 1, 2.
принимают за начало отсчёта координаты . Этой координате придают ряд равноотстоящих значений в диапазоне от нуля до . Для каждого строят схему механизма, отмечая и нумеруя положения точек и . По положениям точки находят координату .
Рис. 3.11. Кинематические диаграммы кривошипно-ползунного механизма
Каждую пару значений координат и откладывают по заранее заготовленным осям графика (рис. 3.11, б). Масштабные пересчёты делают руководствуясь формулой (3.1). Зависимость координаты выходного звена от координаты входного, в данном случае зависимость , называют функцией положения механизма.
Двукратным дифференцированием получают графики и . Принципиально точным является дифференцирование методом касательных. Согласно этому методу в точке дифференцирования, например , проводят касательную (рис. 3.11, б).
Из произвольной точки , лежащей на оси следующего графика, проводят луч, параллельный касательной. Отрезок, отсекаемый лучом на оси , изображает в некотором масштабе производную в точке . Продолжая дифференцирование, из той же точки проводят лучи, параллельные другим касательным к кривой , и получают прочие значения первой производной.
При построении графика второй производной касательные проводят к графику первой производной. По завершении построений определяют масштабы, на которых не останавливаемся.
С помощью производных определяют скорость и ускорение ползуна для любого . Скорость есть производная от координаты по времени : . Координата зависит от , а от : . По правилам дифференцирования сложных функций получают . Поскольку , то скорость ползуна
. (3.7)
Ускорение есть производная по времени от скорости. Как показывает формула (3.7), скорость представляет собой произведение двух переменных – и , причём, есть известная функция угла (см. рис. 3.11, б), а , как и прежде, некоторая функция . С учётом всего этого . Производная есть ускорение кулачка . В итоге, ускорение ползуна
. (3.8)
Используя компактные формы обозначения производных, формулы (3.7), (3.8) представляют в виде:
; .
Эти формулы применимы не только к рычажным механизмам, но также к кулачковым и даже зубчатым механизмам. Важно лишь, чтобы движение на входе у них было вращательное, а на выходе поступательное.
|