Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Группа Ассура с вращательными парамиСодержание книги
Поиск на нашем сайте
Пусть исследуемый механизм имеет схему, показанную на При заданном движении звена 1 первую группу Ассура образует цепь 2, 3, вторую – цепь 4, 5. Это группы с тремя вращательными парами. Анализ начинается с цепи 2, 3. В результате анализа определяют скорости и ускорения точек , , а также угловые скорости и ускорения звеньев 2, 3.
Рис. 3.7. Построение плана скоростей для двухзвенных Скорости точек и . Скорость точки определяют по формуле . Всё необходимое для вычисления этой скорости есть. Для определения скорости точки вводят систему координат , движущуюся поступательно. Эту систему принимают за носитель (переносчик) звена 2, т. е. считают, что абсолютное движение звена 2 – движение относительно стойки – состоит из поступательного вместе с системой и вращательного относительно этой системы. Из такого представления (разложения) движения получают уравнение: .
Под уравнением показана ориентация каждого вектора по отношению к звеньям механизма. Примечание. Второе слагаемое уравнения читается как скорость точки относительно , хотя в действительности это скорость точки относительно системы . Скорость точки относительно равна нулю, т. к. расстояние между этими точками постоянно. Все построения в ТММ выполняют в определённом масштабе. Масштаб какой-либо величины , изображаемой отрезком , характеризуют масштабным коэффициентом: , (3.1) где выражают в единицах системы СИ – метр, килограмм, секунда, радиан т. д., – в миллиметрах. Таким образом, масштабный коэффициент – это цена одного миллиметра чертежа. Графическое решение уравнения скорости точки называется планом скоростей. Чтобы его построить, из произвольной точки , называемой полюсом плана скоростей, проводят вектор , изображающий скорость точки (рис. 3.7, б). Длину вектора выбирают произвольно. По формуле вычисляют масштабный коэффициент плана скоростей. Через точку проводят линию действия вектора . Искомая сумма выходит из полюса и идёт до упора в линию вектора . По формуле вычисляют истинные значения скоростей и . Угловые скорости звеньев 2, 3. Система координат B движется поступательно. Ось этой системы все время параллельна стойке. За любой промежуток времени звено 2 поворачивается относительно системы и относительно стойки на один и тот же угол. Из этого следует, что абсолютная угловая скорость звена 2 равна относительной: . В свою очередь Скорость звена 3 вычисляют по формуле . Направление скорости определяют переносом в точку вектора , изображающего скорость . Скорости мест присоединения цепи 4, 5. Местами присоединения являются точки , . На данный момент звенья 1, 2, к которым присоединяется группа, содержат по две точки с известными скоростями, это точки , на звене 1 и , на звене 2. Когда известны скорости двух точек какого-либо звена, скорость третьей точки определяют по теореме подобия, известной из теоретической механики. Теорема гласит: «Точки звена и концы абсолютных скоростей этих точек на плане скоростей образуют геометрически подобные и сходственно расположенные фигуры». Сходственность расположения означает одинаковость взаимного положения точек. Прежде чем применять теорему к звену 1, необходимо указать на плане конец скорости точки . Все абсолютные скорости на плане выходят из его полюса. Скорость точки равна нулю, следовательно, конец вектора этой скорости находится в той же точке, где и начало, т. е. в полюсе. Имея это в виду, на стороне плана строят треугольник (читай ), подобный треугольнику на схеме механизма. Примечание. Для лучшей читаемости плана скоростей всё построенное на данном и последующих этапах выделено пунктирными линиями. Из двух возможных треугольников, подобных , выбирают сходственно расположенный. Сходственность расположения можно обеспечить, ориентируясь, например, на положение точки по отношению к стороне : при наблюдении из точки точка находится справа от прямой , такое же положение должна занимать точка по отношению к прямой , если смотреть из точки . Подобие и сходственность расположения можно обеспечить проще, если учесть взаимную перпендикулярность одноимённых сторон треугольников и . На этом основании из точки проводят прямую , перпендикулярную (точки ещё нет), а из точки – прямую , перпендикулярную . На пересечении этих прямых получают точку . Переходя к звену 2, определяют скорость точки . Для этого на стороне плана скоростей строят треугольник , подобный и сходственно расположенный треугольнику . Проблема сходственности решается здесь аналогично рассмотренной выше. Скорость точки . С этого места решение задачи обретает общий характер, не знакомый по курсу теоретической механики. С местами присоединения цепи 4, 5 связывают системы координат и , движущиеся поступательно (см. рис. 3.7, а). Эти системы принимают за несущие для звеньев 4 и 5, соответственно. Говоря более подробно, считается, что движение звена 4 состоит из поступательного вместе с системой и вращательного относительно этой системы. Аналогично раскладывается движение звена 5. Из принятых разложений движения вытекает система уравнений: (3.2) В этой системе есть скорость точки относительно системы координат и, следовательно, . Аналогично, . Чтобы решить систему уравнений, из полюса р (см. рис. 3.7, б) выстраивают две цепи векторов, стоящих в правой части уравнений. Первые слагаемые , обоих уравнений уже построены. Остаётся провести через их концы , линии действия вторых слагаемых , . Искомая сумма начинается в полюсе и заканчивается в точке пересечения линий действия вторых слагаемых. На этом определение всех линейных скоростей закончено. Угловые скорости звеньев 4, 5 определяют так же, как для звена 2. Ускорения точек и (рис. 3.8, а). Ускорение точки определяют непосредственно по исходным данным: ; ; . Для определения ускорения точки составляют два уравнения: (3.3) Первое вытекает из разложения движения звена 2 на поступательное с системой и вращательное относительно этой системы. Второе есть результат разложения ускорения точки на нормальную и тангенциальную составляющие. В первом уравнении отсутствует ускорение Кориолиса. Это объясняется поступательным движением системы . Недостающие нормальные составляющие в обоих уравнениях определяют по формулам: ; . Направление этих составляющих – к центру кривизны соответствующей траектории. Так, составляющая направлена от точки к точке , составляющая – от точки к . Тангенциальные составляющие перпендикулярны нормальным, но не известны по величине. Однако всего этого достаточно для решения системы (3.3). Как и в случае скоростей, из полюса (рис. 3.8, б) выстраивают две цепи векторов, стоящих в правой части обоих уравнений системы (3.3). Этим цепям соответствуют ломаные и соответственно. Результирующий вектор проводят из полюса в точку пересечения последних слагаемых системы.
Рис. 3.8. Построение плана ускорений для двухзвенных Буквой c цифровым индексом обозначены концы нормальных составляющих ускорений. Так, , , – это концы составляющих , , соответственно. Под прямым углом к нормальным составляющим располагаются тангенциальные. На взаимную перпендикулярность указывают знаки прямого угла, расположенные при каждой точке . Масштабы. Проведя вектор , сразу же определяют масштабный коэффициент плана ускорений: . Длины отрезков, изображающих и другие вычисленные выше ускорения, определяют по формуле . Истинное значение любого ускорения, найденного из построений, находят по обратной формуле: . Угловые ускорения. Как и в случае угловых скоростей, абсолютное ускорение звена 2 равно относительному: . В свою очередь, . Направление ускорения определяет вектор , изображающий ускорение . Перенесённый по принадлежности в точку , он «вращает» звено 2 по часовой стрелке, сюда и направлено ускорение . Для звена 3 угловое ускорение . Направление этого ускорения определяет вектор , изображающий ускорение . Перенесенный по принадлежности в точку , он «вращает» звено 3 Ускорения мест присоединения , цепи 4, 5. Их определяют по теореме подобия, которая справедлива и для ускорений. Так, для определения ускорения точки строят треугольник (точка совпадает с полюсом ), подобный треугольнику и сходственно с ним расположенный. Ускорение точки определяют построением треугольника , подобного и сходственно расположенного с треугольником . В отличие от скоростей, подобные треугольники здесь не перпендикулярны друг другу, и воспользоваться упрощённым построением их невозможно. Чтобы не перегружать рисунок, стороны треугольника не показаны, но отмечены его вершины. Примечание. Как и в случае плана скоростей, для лучшей читаемости плана ускорений всё построенное на данном и последующих этапах выделено пунктиром. Ускорение точки . Уравнения ускорений этой точки составляют на основе тех же разложений движения, что и при определении скоростей: (3.4) Нормальные составляющие относительных ускорений определяют по формулам: ; . Входящие сюда относительные скорости берут из плана скоростей. Ускорение Кориолиса в обоих уравнениях равно нулю, т. к. носители звеньев 4, 5 движутся поступательно. Чтобы решить систему (3.4), из полюса выстраивают две цепи векторов, стоящих в правой части уравнений. Первые слагаемые , обоих уравнений уже построены. Остаётся продолжить эти цепи и на пересечении получить конец ускорения .
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 307; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.253.195 (0.01 с.) |