Линейные операции над векторами. Пространство Rn 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Линейные операции над векторами. Пространство Rn



Линейными операциями над векторами называются операции сложения векторов и умножения вектора на число.

Сложение и вычитание векторов

Определение

Сложение векторов и осуществляется по правилу треугольника.

Суммой двух векторов и называют такой третий вектор , начало которого совпадает с началом , а конец - с концом при условии, что конец вектора и начало вектора совпадают (рис. 1).

Для сложения векторов применяется также правило параллелограмма.

Определение

Правило параллелограмма - если два неколлинеарных вектора и привести к общему началу, то вектор совпадает с диагональю параллелограмма, построенного на векторах и (рис. 2). Причем начало вектора совпадает с началом заданных векторов.

Определение

Вектор называется противоположным вектором к вектору , если он коллинеарен вектору , равен ему по длине, но направлен в противоположную сторону вектору .

Операция сложения векторов обладает следующими свойствами:

1. - коммутативность

2. - ассоциативность

3.

4.

Определение

Разностью векторов и называется вектор такой, что выполняется условие: (рис. 3).

Умножение вектора на число

Определение

Произведением вектора на число называется вектор , удовлетворяющий условиям:

1.

2.

3. , если , , если .

Свойства умножения вектора на число:

1.

2.

3.

4.

5.

6.

Здесь и - произвольные векторы, , - произвольные числа.

Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность равную 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство с введённым на нём положительно определённым скалярным произведением, либо метрическое пространство, соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.

-мерное евклидово пространство обозначается также часто используется обозначение (если из контекста ясно, что пространство обладает евклидовой структурой).

 

Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения. Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел, на векторах которого задана вещественнозначная функция обладающая следующими тремя свойствами:

  • Билинейность: для любых векторов и для любых вещественных чисел и
  • Симметричность: для любых векторов
  • Положительная определённость: для любого причём

Аффинное пространство, соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством[1].

Пример евклидова пространства — координатное пространство состоящее из всевозможных n -ок вещественных чисел скалярное произведение в котором определяется формулой

Базис и координаты вектора

Ба́зис (др.-греч. βασις, основа) — множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества — базисных векторов.

В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:

  • Базис Га́меля, в определении которого рассматриваются только конечные линейные комбинации. Базис Гамеля применяется в основном в абстрактной алгебре (в частности в линейной алгебре).
  • Базис Ша́удера, в определении которого рассматриваются и бесконечные линейные комбинации, а именно — разложение в ряды. Это определение применяется в основном в функциональном анализе, в частности для гильбертова пространства,

В конечномерных пространствах обе разновидности базиса совпадают.

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.

где — координаты вектора.

Скалярное произведение.

операция над двумя векторами, результатом которой является число [когда рассматриваются векторы, числа часто называют скалярами], не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Данной операции соответствует умножение длины вектора x на проекцию вектора y на вектор x. Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

Векторное произведение

это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов — модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

  • Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

где

Смешанное произведение

Сме́шанное произведе́ние векторов — скалярное произведение вектора на векторное произведение векторов и :

.

Иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами . смешанное произведение трех векторов можно найти через определитель

Плоскость в пространстве

Плоскость — алгебраическая поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением первой степени.



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 659; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.0.61 (0.011 с.)