Теорема Безу. Схема Горнера. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теорема Безу. Схема Горнера.



Теорема Безу утверждает, что остаток от деления многочлена на многочлен равен .Предполагается, что коэффициенты многочлена содержатся в некотором коммутативном кольце с единицей (например, в поле вещественных или комплексных чисел).

Доказательство

Поделим с остатком многочлен на многочлен :

Так как , то — многочлен степени не выше 0. Подставляя , поскольку , имеем .

Следствия

  • Число является корнем многочлена тогда и только тогда, когда делится без остатка на двучлен (отсюда, в частности, следует, что множество корней многочлена тождественно множеству корней соответствующего уравнения ).
  • Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).
  • Пусть — целый корень приведённого многочлена с целыми коэффициентами. Тогда для любого целого число делится на .

Схе́ма Го́рнера (или правило Горнера, метод Горнера) — алгоритм вычисления значения многочлена, записанного в виде суммы мономов (одночленов), при заданном значении переменной. Метод Горнера позволяет найти корни многочлена[1], а также вычислить производные полинома в заданной точке. Схема Горнера также является простым алгоритмом для деления многочлена на бином вида . Метод назван в честь Уильяма Джорджа Горнера. Пример №1

Разделить 5 x 4+5 x 3+ x 2−11 на x −1, используя схему Горнера.

Решение

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена 5 x 4+5 x 3+ x 2−11, расположенные по убыванию степеней переменной x. Заметьте, что данный многочлен не содержит x в первой степени, т.е. коэффициент перед x в первой степени равен 0. Так как мы делим на x −1, то во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число 5, просто перенеся его из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу: 1⋅5+5=10:

Аналогично заполним и четвертую ячейку второй строки: 1⋅10+1=11:

Для пятой ячейки получим: 1⋅11+0=11:

И, наконец, для последней, шестой ячейки, имеем: 1⋅11+(−11)=0:

Задача решена, осталось только записать ответ:

Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления 5 x 4+5 x 3+ x 2−11 на x −1. Естественно, что так как степень исходного многочлена 5 x 4+5 x 3+ x 2−11 равнялась четырём, то степень полученного многочлена 5 x 3+10 x 2+11 x +11 на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остачу от деления многочлена 5 x 4+5 x 3+ x 2−11 на x −1. В нашем случае остача равна нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена 5 x 4+5 x 3+ x 2−11 при x =1 равно нулю.

Можно сформулировать вывод и в такой форме: так как значение многочлена 5 x 4+5 x 3+ x 2−11 при x =1 равно нулю, то единица является корнем многочлена 5 x 4+5 x 3+ x 2−11.

Основная теорема алгебры.

Основна́я теоре́ма а́лгебры утверждает, что поле комплексных чисел алгебраически замкнуто, то есть

Всякий отличный от константы многочлен (от одной переменной) с комплексными коэффициентами имеет, по крайней мере, один корень на поле комплексных чисел.

Данное утверждение справедливо и для многочленов с вещественными коэффициентами, так как всякое вещественное число является комплексным с нулевой мнимой частью.

Не существует строго алгебраического доказательства теоремы — все имеющиеся привлекают неалгебраические концепции, вроде полноты множества вещественных чисел или топологии комплексной плоскости. К тому же, теорема не является "основной" в современной алгебре — она получила это название во времена, когда основным направлением алгебры был поиск решений алгебраических уравнений с вещественными и комплексными коэффициентами.

Доказательство

Самое простое доказательство этой теоремы даётся методами комплексного анализа. Используется тот факт, что функция, аналитическая на всей комплексной плоскости и не имеющая особенностей на бесконечности, есть константа. Посему, функция 1/p, где p — многочлен, должна иметь хоть один полюс на комплексной плоскости, а, соответственно, многочлен имеет хоть один корень.

Следствие

Немедленным следствием из теоремы является то, что любой многочлен степени над полем комплексных чисел имеет в нём ровно корней, с учётом их кратности.

Доказательство следствия

У многочлена есть корень , значит, по теореме Безу, он представим в виде , где — другой многочлен. Применим теорему к и будем применять её таким же образом до тех пор, пока на месте не окажется линейный множитель.

Формулы Виета.

Формулы Виета — формулы, выражающие коэффициенты многочлена через его корни.

Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Если — корни многочлена

(каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:

Иначе говоря равно сумме всех возможных произведений из корней.

Если старший коэффициент многочлена , то для применения формулы Виета необходимо предварительно разделить все коэффициенты на (это не влияет на значение корней многочлена). В этом случае формулы Виета дают выражение для отношений всех коэффициентов к старшему. Из последней формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также целочисленен.

Доказательство

Доказательство осуществляется рассмотрением равенства, полученного разложением многочлена по корням, учитывая, что

Приравнивая коэффициенты при одинаковых степенях (теорема единственности), получаем формулы Виета.



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 757; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.200.219.10 (0.006 с.)