Евклидово пространство. Неравенство Коши-Буняковского треугольника. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Евклидово пространство. Неравенство Коши-Буняковского треугольника.



Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность равную 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство с введённым на нём положительно определённым скалярным произведением, либо метрическое пространство, соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.

-мерное евклидово пространство обозначается также часто используется обозначение

Неравенство Коши — Буняковского — Шварца и неравенство треугольника

В данном выше определении угла остался один пробел: для того, чтобы был определён, необходимо, чтобы выполнялось неравенство Это неравенство действительно выполняются в произвольном евклидовом пространстве, оно называется неравенством Коши — Буняковского — Шварца. Из этого неравенства, в свою очередь, следует неравенство треугольника: Неравенство треугольника, вместе с перечисенными выше свойствами длины, означает, что длина вектора является нормой на евклидовом векторном пространстве, а функция задаёт на евклидовом пространстве структуру метрического пространства (эта функция называется евклидовой метрикой). В частности, расстояние между элементами (точками) и координатного пространства задаётся формулой

Ортонормированная система векторов евклидового пространства

Ортонормированные базисы

Ортонормированный базис в евклидовом (векторном) пространстве — это базис, состоящий из попарно ортогональных векторов единичной нормы. Ортонормированные базисы наиболее удобны для вычислений. Так, например, скалярное произведение векторов с координатами и в ортонормированном базисе можно вычислять по формуле В любом евклидовом пространстве существует ортонормированный базис. Выбрав в двух евклидовых пространствах ортонормированные базисы и переведя один из них в другой линейным отображением, можно доказать, что любые два евклидовых пространства одинаковой размерности изоморфны (в частности, -мерное евклидово пространство изоморфно со стандартным скалярным произведением).

49. Линейный оператор и его матрица. Линейное преобразование в координатах.

Рассмотрим линейный оператор A, действующий в конечномерном линейном пространстве X, dim(x)=n и пусть e1, e2,..., en - базис в X. Обозначим через A e1 = (a11,...,an1),..., A en = (a1n,...,ann) образы базисных векторов e1, e2,..., en.

Матрица

Столбцами которой являются координаты образов базисных векторов, называется матрицей линейного оператора в заданном базисе.

Доказано, что каждому линейному оператору, действующему в n-мерном линейном пространстве, отвечает единственная квадратная матрица порядка n; и обратно каждая квадратная матрица порядка n задает единственный линейный оператор, действующий в этом пространстве. При этом соотношения

с одной стороны, связывают координаты образа y = A x с координатами прообраза X, с другой стороны, описывают действие оператора, заданного матрицей A.

Линейное преобразование в координатах

 



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 364; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.198.43 (0.007 с.)