Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Развитие у детей представления сб известных отрезках натурального рядаСодержание книги
Поиск на нашем сайте
Прислушиваясь к речи взрослых, дети рано начинают использовать слова-числительные. Но заимствуется лишь внешняя сторона счета взрослых. Нередко порядок называемых слов-числительных является копией того или иного номера телефона, который ребенок слышал от взрослых, или номером дома, квартиры и мн. др. Порядок называния слов-числительных не является стабильным и иногда меняется у одного и того же ребенка. Подобное случайное называние слов-числительных проф. И. А. Френкель в своем исследовании назвал хаотическим счетом. Но постепенно называние числительных упорядочивается. Дети усваивают порядок числительных на отдельных участках натурального ряда, например, в пределах пяти, а дальше вновь произносят их хаотически. И среди хаотически называемых числительных вновь оказываются отдельные числительные из упорядоченного отрезка —1, 2, 3, 4, 5, 8, 12, 2, 5, 40. Дальнейшее упорядочивание названий происходит в двух планах: с одной стороны, увеличиваются отрезки запоминаемых в последовательности числительных, а с другой — дети начинают осознавать, что каждое из слов-числительных всегда занимает свое определенное место, хотя они еще не понимают, почему три всегда следует за двумя, а шесть — за пятью. У детей образуются лишь слухо-речедвигательные связи между называемыми числительными подобно тому, как запоминается любая бессмысленная счита-лочка, например: э-ни-ки-бе-ни-ки-си-ко-ле-са, э-ни-ки-бе-ни-ки-кнап. Даже взрослые не могут начать эту считалочку с какого-либо среднего слога, например, со слога «ко», потому что при заучивании здесь образуются лишь слухо-речедвигательные связи между слогами, и названный один слог не вызывает всей цепочки слов. По такому же типу у маленьких детей происходит и запоминание слов-числительных, поскольку значение этих слов остается для них неизвестным. В усвоенной цепочке слов: раз, два, три и т; д. совершенно невозможна замена слова раз словом один: образовавшиеся связи разрушаются, и ребенок молчит, не зная, что должно следовать за словом один (в некоторых же случаях, в угоду старшим ребенок (2 года 6 мес.— 3 года) называет слово один, как предшествовавшее всей заученной им цепочке: один, раз, два, три...). Встречаются и такие случаи, когда ребенок первые два-три слова-числительные воспринимает как одно слово, делая ударение на первом слоге «раздватри» или «раздва». В таких случаях он соотносит этот комплекс слогов к одному движению или предмету как своеобразное слово-прилагательное. «Это — яздватыг»,— говорит Леночка, нанизывая игрушку на елочку в кукольном уголке. По-видимому, она слышала, как считали, н непонятное ей слово раздватри ассоциировалось с елочкой. Бывает и так, что ребенок не сливает числительные в одно слово, но сопровождает ими движения своей руки, не соотнося слова-числительные с предметами. Поэтому интересно проследить, как же начинают представлять себе дети отрезок тех чисел натурального ряда, которые освоены ими. Создается ли у них какой-либо конкретный образ ряда или он отсутствует? На уровне усвоения слов-числительных как речедвигательной цепочки у детей, по-видимому, отсутствует какое-либо конкретное представление о натуральном ряде чисел. Дети не знают еще ни последовательности, ни тем более места слова-числа в системе других числительных. В таких случаях едва ли можно говорить о зрительном образе, скорее, это слуховой образ слова раздватри. В последующем слова-числительные как бы выстраиваются в ряд и называются по порядку, но происходит это постепенно. Вначале упорядочивается лишь некоторое множество числительных, после него числительные называются, хотя и с промежутками, но всегда в восходящем порядке: 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18 и т. д. Усвоив, что числительные первого десятка сочетаются с названиями десятков 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, дети дальше называют их так: двадцать десять, двадцать одиннадцать и т. д. Но стоит поправить и назвать после двадцати девяти тридцать, как стереотип восстановлен и продолжается: 31, 32,..., 39, тридцать десять и т. д. Некоторые дети начинают при этом понимать, что после двадцати девяти, тридцати девяти, сорока девяти имеются особые слова, названия которых они еще не знают. В таких случаях дети делают паузу, ожи-Дая помощи взрослого, Однако, как мы уже говорили выше, называние числительных даже в большом объеме еще не свидетельствует ни об усвоении деятельности счета, ни о формировании ясного представления о натуральном ряде. Тем не менее у детей возникает уже 'некоторый образ натурального ряда чисел. При отсутствии специального обучения этот процесс протекает весьма длительно и своеобразно. Ребенок в таких случаях ставится в условия как бы «первооткрывателя», а не наследника в усвоении знаний современного,, ему общества. Поэтому дети одного и того же возраста могут,оказаться на различных уровнях знаний. Те дети, которые не знают отношений между смежными числами, не могут ответить на предлагаемый им вопрос, какое число стоит до трех, какое.посде трех. Они просто начинают называть числительные по порядку от слов раз, два и т. д. Они не могут сразу решить и такую задачу: «У меня 6 конфет. Если мне прибавят еще одну, сколькр конфет у меня будет?» Они начинают пересчитывать мысленно представляемые конфеты. Еще сложнее таким детям дать.правильный ответ, если количество конфет уменьшилось на одну. В таких случаях они отсчитывают на пальцах шесть конфет, один палец отодвигают и пересчитывают оставшиеся. Это поведение наиболее типично для детей пяти-шести лет. Другие дети, отвечая на вопрос, какое число «до» указанного и «после» него, сами заменяют термин до — после термином впереди — сзади и называют последующее число, рассматривая его как впереди стоящее. Многие дети, называя последующее число, не могут все же назвать предыдущее. Этим детям натуральный ряд чисел представляется как движущийся вперед. Подобное представление мы условно назвали «пространственным образом» натурального ряда чисел. При выполнении задания найти число, большее на 1 единицу, эти дети мысленно или вслух начинают называть слова-числительные, начиная, с «раз», идя как бы по всему ряду. Тем самым, хотя пространственный образ натурального ряда сформировался у этих детей,на основе понимания, что каждое следующее число больше предыдущего, однако точное представление о разностных отношениях между предыдущим и последующим числом еще не усвоено детьми, что и лишает их возможности сразу назвать число, большее или меньшее указанного на единицу. Итак, особенности формирования представления о натуральном ряде заключаются в том, что оно, развиваясь, лишь постепенно становится понятием. Эмпирическое представление натурального ря.а как чисто «пространственного» образа по, мере усвоения детьми взаимно-обратных отношений между смежными числами в процессе обучения перестраивается в понятие о натуральном ряде, основой чего является осознание существенного признака числа, разностных его отношений между смежными числами п ± 1, где п — данное натуральное число. Дети на- чинают усваивать основной принцип построения натурального ряда: каждое последующее число больше предыдущего на 1 единицу и каждое предыдущее меньше последующего на 1 единицу. Массовый опыт убеждает в возможности и необходимости в процессе обучения раскрыть перед детьми взаимно-обратные и разностные отношения. Эти отношения целесообразно демонстрировать детям на сопоставлении двух множеств путем установления между ними взаимно-однозначного соответствия. Из изложенного следует вывод о необходимости, обучая счету, одновременно знакомить детей с взаимно-обратными отношениями между смежными числами, опираясь в этом обучении на сравнение конкретных множеств. В работах Ж. Пиаже и Б. Инельдер, посвященных изучению особенностей спонтанного развития у детей действий упорядочивания (сериации) множеств и понимания ими порядковых отношений, указывается на недоступность для детей дошкольного возраста взаимно-обратных отношений в упорядоченном ряду множества. Авторы указывают, что такое понимание становится возможным лишь на уровне «операторных» операций, т. е. на уровне развитой мыслительной деятельности, доступной лишь детям восьми-девяти лет. Исследования же советских авторов (Л. А. Венгер, Е. В. Про-скура, А. М. Леушина и многие другие) опровергают выводы Ж- Пиаже и Б. Инельдер. В условиях организованного обучения дети шести-семи лет овладевают пониманием обратимости. Обучение счету и нумерации ни в коей мере не должно сводиться к одностороннему пониманию того, что то число больше, которое находится дальше от начала счета. Число отражает двоякие отношения: отношение к единице (количественное значение) и отношение к своим «соседям», т. е. к смежным числам (порядковые отношения). И эти двоякие отношения числа должны раскрываться перед детьми в их единстве. Между тем даже при изучении нумерации в школе забывают показать отношение числа к единице, предполагая, что количественное отношение числа уже усвоено детьми. Если бы дело обстояло так, то учащиеся не решали бы пример подобным образом: 12 — 8 = 16. В этой ошибке обычно усматривают следующие причины: непонимание ребенком принципа разрядности, неупорядоченность движения глаз ребенка (детский стереотип движения справа налево). А самая существенная причина заключается в следующем: ученик не видит, что, уменьшая число 12, он получает большее число—16; он не замечает абсурдности полученного ответа, хотя и говорит об уменьшении числа 12; он не усвоил количественного значения числа, ибо привык определять большее или меньшее число лишь по признаку дальности его от начала счета. Поэтому при изучении нумерации в пределах первого десят- и Ф°РмиР°вать У Детей как понятие числа к единице (количественное значение) так i гие взаимно-обратных и разностных отношений межлч смежными числами. И это, как убеждает практический оТьг? вполне возможно показать и разъяснить детям, опираясь на аглядное сравнение множеств, выраженных смежными числами, и на установление между элементами этих множеств взаимно-однозначного соответствия. ГЛАВА IT
|
||||
Последнее изменение этой страницы: 2016-12-11; просмотров: 534; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.195.45 (0.008 с.) |