Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аффинная и прямоугольная декартова система координат на плоскости. Основные задачи на координаты

Поиск

1 В прямоугольной декартовой и аффинной системах координат построить следующие точки: А (- 1; 0), В (- 2; 1), С (1; 1), D (- 3; 2), E (0; - 2), F (- 3; 3).

2 Построить точки А (- 2; 3; 4;) и В (2; - 3; - 2) в прямоугольной декартовой и в аффинной системах координат.

3 В аффинной системе координат даны координаты вектора и точки . Определить координаты конца вектора , если он отложен от точки :

а) (3; 4), (- 2; 3); б) (-3; 0), (0; 0).

4 Начало координат помещено в центре квадрата, сторона которого равна 2 а. Найти координаты вершин квадрата, если:

а) стороны квадрата параллельны осям координат;

б) диагонали квадрата лежат на осях координат.

5 Вершины четырехугольника находятся в точках А (1; - 3), В (8; 0), С (4; 8) и D (- 3; 5). Доказать, что ABCD – параллелограмм.

6 Вершины четырехугольника находятся в точках А (1; 1), В (2; 3), С (5; 0) и

D (7; - 5). Доказать, что ABCD – трапеция.

7 Даны три вершины параллелограмма: А (- 1; 3), В (2; - 5), С (0; 4). Определить четвертую вершину D, противоположную В.

8 Даны две вершины равностороннего треугольника А (- 3; 2), В (1; 4). Найти третью вершину С.

9 Даны две смежные вершины параллелограмма А (- 4; 4), В (2; 8) и точка

М (2; 2) пересечения его диагоналей. Определить две другие вершины С и D.

10 Опеделить координаты точек, делящих отрезок А (2; 3), В (-1;2) в отношении .

11 Доказать, что в аффинной системе координат точка М (х; у) пересечения медиан треугольника с вершинами имеет координаты Найти координаты точки пересечения медиан, если его вершины имеют координаты:

а) А (3; 1), В (-1; 4), С (1; 1);

б) А (-2; 3), В (5; -2), С (-3; -1).

 

12 Даны координаты вершин треугольника АВС: А (5; -4), В (-1; 2), С (5; 1). Найти длину медианы АМ.

13 Даны координаты вершин треугольника АВС: А (4; 1), В (7; 5), С (-4; 7). Вычислить длину биссектрисы AD угла А.

14 Доказать, что треугольник АВС – прямоугольный, если А (1; 1), В (2; 5),

С (-6; 7). Указать вершину прямого угла (применить обратную теорему Пифагора).

15 На оси абсцисс айти точку, равноудаленную от точек А (1; 2) и В (-3; 4).

16 На оси ординат найти точку, равноудаленную от точек А (-3; 5) и В (6; 4).

17 Определить рдиус окружности, которая проходит через точку А (-24 1) и имеет центр в точке С (2; -3).

18 Дан четырехугольник ABCD: А (-1; 7), В (5; 5), С (7; -5), D (3; -7). Доказать, что четырехугольник, вершинами которого служат середины сторон данного четырехугольника, есть параллелограмм.

19 Дана точка М (2; -1; 1). Найти координаты точек, симметричных с точкой М:

а) относительно начала координат;

б) относительно координатных плоскостей ;

в) относительно координатных осей.

20 Даны тройки точек:

а)

б)

в)

Указать среди них тройки точек, лежащих на одной прямой.

21 Доказать, что треугольник АВС: А (3; 5; - 4), В (-1; 1;2), С (-5; -5;-2) является равнобедренным.

22 Доказать, что четырехугольник, вершины которого находятся в точках

А (7; 2; 4), В (4; -4;2), С (6; -7;8), D (9; -1; 10) является квадратом.

23 Даны вершины треугольника А (2; -1; 4), В (3; 2; -6), С (-5; 0;2). Вычислить длину медианы АМ.

24 Найти радиус сферы, проходящей через точку А (-2; 0; 2) и имеющей центр в точке С (1; 1; 6).

25 На прямой, проходящей через точки А (1; 0; 4) и В (3; -1; 2), найти точку С такую, чтобы АС = 3 АВ и точка В лежала между точками А и С.

26 Найти отношение, в котором каждая из координатных плоскостей делит отрезок АВ: А (2; -1; 7) и В (4; 5; -2). Найти координаты делящей точки.

27 На оси О х найти точку, равноудаленную от точек А (1; 2; 3) и В (-2; 1; 3)

28 В треугольнике с вершинами А (5; 0; 0), В (1; 1; 1), С (3; -1;2) найти внутренние углы.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 691; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.231.128 (0.008 с.)