Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Плоские электромагнитные волныСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
где — некоторый постоянный вектор. В этом случае и удовлетворяют уравнениям Максвелла в отсутствие зарядов и токов, если между ними существует следующая связь:
и они перпендикулярны вектору , который должен быть единичным: Вывод решения для плоской волны [показать] Если напряжённость электрического поля зависит от координат и времени в виде следующей их комбинации , то для производной -той компоненты вектора по -той координате и времени можно записать: и аналогично для магнитной индукции. Поэтому уравнения Максвелла в отсутствие зарядов и токов принимают вид (система СИ): Интегрируя эти соотношения по и опуская константы интегрирования, которые соответствуют постоянным полям, получаем: Подставляя четвёртое уравнение в третье, получаем . Физический смысл решения в виде плоской волны состоит в следующем. Выберем ось декартовой системы координат так, чтобы вектор был направлен вдоль неё. Тогда электрические и магнитные поля волны зависят от координаты и времени следующим образом: Предположим, что в начальный момент времени , напряжённость поля является произвольной векторной функцией . С течением времени, эта функция будет сдвигаться в пространстве вдоль оси со скоростью . В электромагнитной волне в общем случае напряжённость поля может быть произвольной непериодической функцией . Например, решение в виде плоской волны может описывать электромагнитный импульс локализованный вдоль направления движения. В плоскости перпендикулярной , электромагнитные поля не изменяются, что означает, что в этой плоскости плоская волна не ограничена и имеет плоский фазовый фронт (именно поэтому волна называется плоской). Так как электрическое и магнитное поля при распространении плоской волны всё время остаются перпендикулярными вектору , такие волны называют «поперечными» или «трансверсальными». Векторы и , в силу свойств векторного произведения, также перпендикулярны друг другу.
Вектор Пойнтинга (плотность потока энергии), независимо от системы единиц, связан с полной плотностью энергии следующим образом: Это соотношение соответствует уравнению связи импульса и энергии для безмассовой частицы в релятивистской теории. Однако, скорость в среде меньше чем скорость света в вакууме . Циркулярно и линейно поляризованная плоская электромагнитная волна Плоские и поперечные волны являются математическими абстракциями. Реальные волны конечной апертуры из-за эффекта дифракции можно считать плоскими и поперечными лишь в некотором приближении.
Выберем координатную ось вдоль волнового вектора . Тогда вектор электрического поля (как, впрочем, и магнитного) будет лежать в плоскости , то есть . Если по каждой проекции в этой плоскости электрическое поле совершает периодические колебания, то такую волну называют монохроматической плоской волной: Сравнение с общим решением для плоской волны, приводит к следующей связи между вектором и константой , которое называется уравнением дисперсии: В этом случае, вектор называется волновым вектором, а — круговой частотой монохроматической электромагнитной волны. Модуль волнового вектора и круговая частота связаны с длиной волны и её частотой следующим образом: Константы и являются сдвигами фазы, а и — амплитудами колебаний вдоль каждой оси. В фиксированной точке пространства () вектор электрического поля, в общем случае, описывает в плоскости эллипс, поэтому такие волны называются эллиптически поляризованными. Их частным случаем являются волны поляризованные по кругу. Вырожденный в прямую эллипс соответствует колебаниям напряжённости поля вдоль одной прямой в плоскости . Такие волны называются линейно поляризованными. Аналогична ситуация с вектором магнитной индукции, который всё время перпендикулярен напряжённости электрического поля. Связь с другими теориями Уравнения Максвелла полностью совместимы с принципами специальной теории относительности. Они также применимы при микроскопическом описании вещества, когда заряженные частицы подчиняются принципам квантовой механики, а электромагнитное поле остаётся классическим (не квантовым). В этом случае квантовые объекты (например, электроны) описываются уравнением Шрёдингера или уравнением Дирака, однако, потенциалы электромагнитного взаимодействия в этих уравнениях определяются классическими уравнениями Максвелла. Тем не менее, существуют явления, для описания которых требуется более последовательное объединение полевого подхода Фарадея — Максвелла с принципами квантовой механики. Оно осуществляется при помощи методов квантовой теории поля в квантовой электродинамике. В этом случае форма уравнений Максвелла (лагранжиан) остаётся неизменной, однако поля становятся операторами, а уравнения Максвелла — операторными уравнениями Гейзенберга. Решение подобных уравнений приводит к появлению новых эффектов, отсутствующих в классической теории поля. Эти эффекты существенны, в частности, в следующих физических ситуациях:
Аксиоматический подход Исторически уравнения Максвелла возникли в результате обобщения различных экспериментальных открытий. Однако с аксиоматической точки зрения их можно получить при помощи следующей последовательности шагов[69]:
Второй подход основан на лагранжевом формализме[70]. При этом постулируется, что электромагнитное поле описывается линейным взаимодействием четырёхмерного потенциала , с четырёх-вектором электрического тока , а свободный лагранжиан пропорционален инвариантной свёртке квадрата тензора электромагнитного поля . Как в первом, так и во втором подходе предполагаются установленными принципы теории относительности. Хотя исторически она возникла на основе уравнений Максвелла и второго постулата Эйнштейна, известен, восходящий к работам Игнатовского [71], Франка и Роте[72], аксиоматический способ построения СТО, не использующий постулата об инвариантности скорости света и уравнений Максвелла. В обоих аксиоматических подходах получаются уравнения Максвелла в вакууме при наличии свободных зарядов. Расширение этих уравнений на электродинамику сплошных сред требует дальнейшего привлечения различных модельных представлений о структуре вещества.
|
||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 443; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.119.191 (0.008 с.) |