Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общность и различие процедур оценки и управления рискомСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Общим в оценке риска и управлением риском является то, что они — два аспекта, две стадии единого процесса принятия решения (в широком смысле слова), основанного на характеристике риска. Такая общность обусловлена их главной целевой функцией — определением приоритетов действий, направленных на уменьшение риска до минимума, для чего необходимо знать как его источники и факторы — (анализ риска), так и наиболее эффективные пути его сокращения (управление риском). Взаимосвязь между оценкой риска и его управлением представлена на рис. 1.9. Основное различие между двумя понятиями заключается в том, что оценка риска строится на фундаментальном, прежде всего естественнонаучном и инженерном, изучении источника (например, химического объекта) и факторов риска (например, загрязняющих веществ с учетом особенностей конкретной технологии и экологической обстановки) и механизма взаимодействия между ними. Управление риском опирается на экономический и социальный анализ, а также на законодательную базу. Управление риском имеет дело с анализом альтернатив по минимизации риска, т.е. является, по сути дела, частным случаем класса многокритериальных задач принятия решения в условиях неопределенности. Оценка риска служит основой для исследования и выработки мер управления риском в соответствии с алгоритмом действий. Заключительная фаза процедуры оценки риска — характеристики риска — одновременно является первым звеном процедуры управления риском. Для управления риском его необходимо проанализировать и оценить. Ввиду данного определения риска, его количественный показатель представляет собой численные значения вероятности наступления нежелательного события или (и) результатов нежелательных последствий (ущерба). Рис. 1.9. Взаимосвязь между оценкой и управлением риском: А — область оценки риска; Б — область управления риском; В — область характеристики риска; непрерывные линии — прямые связи между элементами оценки и управления риском; пунктирные линии — обратные связи принятия решения с другими элементами оценки и управления риском.
Поскольку реализация опасности явление случайное, риск опасности есть числовая характеристика соответствующей случайной величины, используемой для описания данной опасности. В качестве простейшего примера возможного формального подхода рассмотрим случайную величину s — длительность периода безаварийной работы промышленного предприятия, областью определения которой служит множество режимов эксплуатации за произвольное (возможно, бесконечное) время. В этом случае можно, вычислить функцию распределения этой величины Fs(t) = P(s≤t), предположив ее независимость от предыстории функционирования промышленного предприятия (такое предположение является наиболее оптимистичным в отношении уровня безопасности). Хорошо известно, что существует единственное решение, удовлетворяющее сформулированному условию: Fs(t) = 1-е-qt для t > 0; Fs(t) = 0 для t < 0, где р > 0 - постоянная; это так называемое показательное распределение. Математическое ожидание Ms случайной величины s есть Ms = 1/p, что позволяет интерпретировать параметр р как среднюю (ожидаемую) частоту аварий или риск аварий в смысле обсуждаемого определения. Вероятность аварий pT за период времени, не превосходящий Т, определяется, очевидно, как pT = P(s ≤ Т) = 1-е-qt. Отметим, что всегда рT < р • Т, поэтому неверно часто высказываемое утверждение, что для аварии, риск которой равен 1/T, она обязательно случится за период Т (вероятность такого события равна 1 – е-1, т. е. приблизительно 0.632). Более того, даже в этом простейшем случае показательного распределения было бы неверно утверждать, что вероятность аварии рT за период времени, меньший или равный Т, определяется, как произведение частоты аварии р на этот период Т. Имеет место лишь приблизительное равенство в случае малых рисков, т. е. редких аварий. Однако функциональная зависимость между вероятностью аварий и частотой ее возникновения (для фиксированного распределения) существует. Последствие Y в виде нежелательного события или ущерба может в соответствии со своей величиной описываться своими специфическими параметрами. Диапазон при этом может быть весьма широк — от экономических до этических ценностей и человеческих жертв. Мерой возможности наступления риска R служит вероятность его наступления Р. Отсюда следует: R = Y • Р. Обратимся вновь к функциональной модели (Рис. 1.7.). Для отображенных на ней множества исходных причин развития риска можно в общем виде записать формулу расчета в виде: где: R — риск, т. е. вероятность нанесения определенного ущерба; Р1 - вероятность возникновения события или явления, обусловливающего формирование и действие опасных факторов; Р2 - вероятность формирования определенных уровней физических полей, ударных нагрузок, полей концентрации вредных веществ, воздействующих на людей и другие объекты; Р3 — вероятность того, что указанные уровни полей и нагрузок приведут к определенному ущербу; Р4 - вероятность отказа средств защиты.
Итак, количественная мера риска может выражаться не только вероятностной величиной. Риск иногда интерпретируют как математическое ожидание ущерба, возникающего при реализации опасностей. При определении математического ожидания величины ущерба представляется целесообразным принимать во внимание все возможные виды опасных происшествий для данного объекта и оценку риска производить по сумме произведений вероятностей указанных событий на соответствующие ущербы. В этом случае справедлива следующая зависимость: где: RМО - уровень риска, выраженный через математическое ожидание ущерба; Рi - вероятность возникновения опасного события i -го класса; Yi - величина ущерба при i-м событии.
Хотя последняя интерпретация находит применение, однако вероятностная мера риска является более удобной и применяемой при решении широкого круга задач научного и практического характера, в особенности задач, касающихся промышленной безопасности. На рисунке 1.10 дан обзор ситуаций с риском возникновения соответствующих нежелательных событий и приведены их измерения. При угрозе материальным ценностям риск часто измеряют в денежном выражении. Если различные последствия нежелательного события одинаковы или очень велики, то для сравнения достаточно рассматривать одни соответствующие вероятности. Наряду с этим может возникнуть угроза, которую нельзя выразить количественно, например, когда последствия события нельзя предусмотреть достаточно полно. Примером могут служить
Рис. 1.10. Обзор ситуаций риска последствия выхода из строя прибора (установки и т. д.), используемого в различных областях народного хозяйства, которые поставщик оценить не может. В этом случае мерой риска остается принять вероятность превышения предела нагрузки на систему, где эксплуатировали прибор. При риске, связанном со здоровьем, последствия могут быть частично оценены количественно в таких категориях, как простой в работе или расходы на оплату подменяющего персонала и т. п., страховые выплаты. При риске, связанном с летальным исходом, количественные оценки последствий в большинстве случаев отсутствуют. Особые проблемы ставят случаи, когда опасность грозит и материальным ценностям, и людям, и окружающей природе одновременно, и желательно меру такого риска оценить по нескольким компонентам.
Приемлемый риск Традиционный подход к обеспечению безопасности при эксплуатации технических систем и технологий базируется на концепции «абсолютной безопасности». То есть внедрение всех мер защиты, которые практически осуществимы. Как показывает практика, такая концепция не адекватна законам техносферы. Эти законы имеют вероятностный характер, и абсолютная безопасность достигается лишь в системах, лишенных запасенной энергии. Требование абсолютной безопасности, подкупающее своей гуманностью, оборачивается трагедией для людей, потому что обеспечить нулевой риск в действующих системах невозможно, и человек должен быть ориентирован на возможность возникновения опасной ситуации, т. е. ориентирован на соответствующий риск. Современный мир отверг концепцию абсолютной безопасности и пришел к концепции «приемлемого» (допустимого) риска. То есть если нельзя создать абсолютно безопасные технологии, обеспечить абсолютную безопасность, то, очевидно, следует стремиться к достижению хотя бы такого уровня риска, с которым общество в данное время сможет смириться. В силу этих обстоятельств в промышленно развитых странах начиная с конца 70-х — начала 80-х гг. в исследованиях, связанных с обеспечением безопасности, начался переход от концепции «абсолютной» безопасности к концепции «приемлемого» риска. Степень внедрения этой концепции в практическую деятельность сегодня различна в разных странах и в некоторых из них уже введена в законодательство. Например, в Нидерландах эта концепция в 1985 г. была принята парламентом страны в качестве государственного закона. Согласно ему, вероятность смерти в течение года для индивидуума от опасностей, связанных с техносферой, более 10-6 считается недопустимой, а менее 10-8 — пренебрежимой. «Приемлемый» уровень риска выбирается в диапазоне 10-6-10-8 в год, исходя из экономических и социальных причин. Для сравнения: риск смерти человека, равный 10-6, соответствует риску, которому он подвергается в течение своей поездки на автомобиле на расстояние в 100 км, или полете на самолете на расстояние 650 км, или если он выкуривает 3/4 сигареты, или в течение 15 мин. занимается альпинизмом и т. д.[1] В Нидерландах при планировании промышленной деятельности наряду с
Рис. 1.11.. Построение зон индивидуального риска для опасного предприятия (а) и транспортной магистрали (б), по которой осуществляется перевозка опасных грузов: 1 - изолинии равного риска; 2, 3, 4, 5 — зона соответственно чрезвычайно высокого, высокого, приемлемого и низкого риска. географическими, экономическими и политическими картами используются карты риска для территории страны. В этих условиях, чтобы построить промышленное предприятие и ввести его в эксплуатацию, проектировщикам требуется количественно определить уровень риска его эксплуатации и доказать правительственным органам приемлемость этого риска. При лицензировании нового крупного промышленного предприятия также требуется предоставить топографическую карту риска, которому будет подвергаться человек, оказавшийся в зоне расположения этого предприятия. На этой карте должны быть указаны замкнутые кривые равного риска, каждая из которых соответствует следующим численным значениям вероятности смерти индивидуума в течение года: 10-4, 10-5, 10-6, 10-7 (рис. 1.11.). Требования такого же рода предъявлены и к уже действующим предприятиям. Эксперты стараются определить риск всесторонне. Учитывают индивидуальный риск, социальный риск и риск для экосистем. Первый задается вероятностью гибели отдельного человека, второй соотношением между количеством людей, которые могли погибнуть при одной аварии и вероятностью такой аварии, а третий процентом биологических видов экосистемы, на которых скажется вредное воздействие. Рассматриваются не только события, приводящие к мгновенной смерти, но и факторы, дающие отдаленные последствия — например, использование пестицидов в сельском хозяйстве или загрязнение окружающей среды. Разработаны сложные комплексы компьютерных программ, способные вычислить вероятность аварии на предприятии, определить величину и характер опасных выбросов, учесть метеорологические условия, рельеф местности, расположение дорог и населенных пунктов и в конечном счете построить карту распределения риска. Решение о том, какой уровень риска считать приемлемым, а какой нет, носит не технический, а политический характер и во многом определяется экономическими возможностями страны. Так, правительство и парламент Нидерландов законодательно установили такие уровни. Максимальным приемлемым уровнем индивидуального риска считается величина 10-6 в год. Иными словами, вероятность гибели человека в течение года не должна превышать одного случая из миллиона. Пренебрежимо малым считается индивидуальный риск 10-8 в год. Для факторов, которые приводят к отдаленным опасным последствиям и не имеют порога действия, приняты эти же нормы. Если такие факторы сказываются лишь на превышении порога (например, предельно допустимой концентрации вредного вещества), то максимальный приемлемый уровень риска соответствует порогу. Максимальным приемлемым уровнем риска для экосистем считается тот, при котором может пострадать 5 % видов биогеоценоза. Два конкретных примера того, как работают такие нормы на практике. Голландская компания General Electric Plastics обратилась за разрешением на расширение производства на одном из своих заводов. На этот завод по железной дороге привозилось примерно 600 т хлора в неделю, а в качестве промежуточного реактива использовался фосген. Жители расположенного в 600 м поселка возражали против такого разрешения, поскольку боялись увеличения риска катастрофы. Эксперты провели расчет, и оказалось, что вклад фосгена в общий риск, создаваемый заводом, совсем невелик. Зато расширение завода неминуемо приводило к увеличению объемов хранения и перегрузки хлора, в результате чего значительная часть поселка могла оказаться в зоне, где риск превышал 10-7. Из этой ситуации был найден довольно неожиданный выход: чтобы сделать завод более безопасным, требовалось не просто расширить его, но и начать собственное производство хлора. Тогда исчезла бы угроза, связанная с перевозкой и хранением этого ядовитого газа, и общая безопасность предприятия даже возросла бы. Такой выход устроил и местные власти, и руководителей компании. Другой случай произошел на юго-востоке Голландии, где расположено крупное химическое предприятие, выпускающее среди прочего до полумиллиона тонн аммиака и акрилонитрита в год и отстоящее от ближайших поселков всего на 200 м. Когда местные власти предложили план застройки местности между поселком и предприятием, по существующим правилам был проведен анализ уровня риска в этой зоне. На территории завода находилось около 35 различных объектов, 10 из которых вносили главный вклад в общую угрозу. Каждый из них был тщательно изучен. Неожиданно обнаружилось, что многие считавшиеся раньше весьма опасными установки на самом деле не играют той роли, которую им приписывали. Зато недооценивалась опасность, связанная с хранилищами аммиака. Выяснилось, что часть новой застройки попадает в зону с высоким уровнем риска. Эксперты дали две рекомендации: руководству завода принять меры по снижению риска, местным властям ограничить строительство на территориях, примыкающих к заводу. Жители поселков с энтузиазмом приняли первую часть рекомендаций и с негодованием - вторую. После обсуждения в парламенте было решено в этот раз позволить строительство в зоне, где риск не превышает 10-6, но в будущем ориентироваться на линию, на которой риск составляет 10-8, то есть пренебрежимо мал. Конечно, Нидерланды надо рассматривать как пример страны, где наиболее широко используются вероятностные методы в практической деятельности по обеспечению безопасности населения от риска при эксплуатации промышленных объектов. В других странах масштабы использования концепции «приемлемого» риска в законодательстве более ограничены, но во всех этих странах существует тенденция к ее все более полному применению (см. табл. 1.7). Например, в ФРГ концепция «приемлемого» риска является базовой, на которой развиваются научные основы в области безопасности. Полученные при этом результаты используются для повышения безопасности и минимизации риска, а не для достижения общественного признания определенной технологии. Ключевым значением в установлении допустимого риска является идея, предложенная Фармером. Смысл заключался в установлении случайной зависимости между средним количеством радиоактивной утечки в атмосферу из ядерного реактора и вероятностью (средняя частота в год) наступления такого события. Примером использования таких диаграмм может служить график (рис. 1.12.), на котором подобные зависимости применяются для сравнения опасностей АЭС и других явлений — как техносферы, так и сил природы. За такими графиками закрепилось название «F/N — диаграмма». Тот же смысл имеет график с горизонтальной осью N — «число несчастных случаев» и вертикальной осью F — «частота событий» (рис. 1.13.).
Таблица 1.7. Критерии приемлемости риска в пяти странах
Таким способом определяется предельная кривая частоты аварийных событий (нежелательных последствий), которая может использоваться прежде всего для сравнения опасностей и в качестве исходных данных проектировщиками и специалистами по безопасности. Считается, что кривая отделяет верхнюю область недопустимо большого риска от области приемлемого риска, расположенной ниже и левее кривой. Кривую, таким образом, можно использовать в качестве критерия безопасности, определяющего верхнюю границу допустимой вероятности. Из рис. 1.12 и 1.13 видно, что частота и величина риска, связанного с природными катаклизмами, обычно существенно превосходят угрозы, сопутствующие эксплуатации техники. На рис. 1.14. сопоставлены экономические последствия ущерба, наносимого природными катаклизмами и техническими катастрофами. Поскольку границы оправданного риска трудно рационально обосновать, при решении расчетных или эксплуатационных технических задач следует использовать сравнение с риском в аналогичных ситуациях. Из таблиц 1.8—1.10, а также рис. 1.12. видно, что риск летального исхода существует на уровне 10-7 и выше на человека в год. Таким образом, при проектировании и эксплуатации технических устройств риск на уровне 10-7 чел./год может быть принят допустимым при следующих условиях: · проблема риска проанализирована глубоко и всесторонне; · анализ проведен до принятия решений и подтвержден имеющимися данными в определенном временном интервале; · после наступления неблагоприятного события анализ и заключение о риске, полученные на основании имевшихся данных, не меняются; · анализ показывает и результаты контроля все время подтверждают, что угроза не может быть уменьшена ценой оправданных затрат. Установленную оценку допустимого риска не следует, однако, воспринимать как оправданный предел; она должна служить лишь основой относительной шкалы принимаемых рисков. Рис. 1.12. Частота и количество связанных с техникой несчастных случаев: 7 — суммарная кривая; 2 — общее число аварий самолетов; 3 — пожары; 4 — взрывы; 5 — прорывы плотины; 6 — выбросы вредных химических веществ; 7 — аварии самолетов (без пассажиров); 8 — 100 атомных реакторов Сформулированные положения подтверждают также, что нецелесообразно задавать детерминированную границу риска. Напротив, более приемлемыми параметрами представляются вероятность pν, отделяющая оправданный риск от условно оправданного, и вероятность рu, отделяющая условно оправданный риск, т. е. соответствующий определенным условиям, от неоправданного.
Рис. 1.13. Частота и количество природных катастрофических событий: 1 — суммарная кривая; 2 — торнадо; 3 — ураганы; 4 — землетрясения; 5 — падение метеоритов Рис. 1.14. Объем ущерба, наносимого в результате технических и природных катастрофических событий: непрерывная линия — природные катаклизмы; пунктирная линия — аварии К условиям, при которых летальный риск pl в диапазоне pv < рl ≤ рu может быть допущен, относятся указанные выше четыре требования к анализу риска. Эти требования должен соблюдать принимающий решения, всегда сравнивая изменяющийся риск, например, с повышением максимально допустимой эффективности, исключением неблагоприятных ситуаций и т. п. Для летального риска принимают значения оправданного pv =10-8 и, с большим безопасным промежутком, неоправданного рu = 10-5 на человека в год; значения эти выглядят разумными. Таблица 1.8 Вероятность летального исхода Таблица 1.9 Вероятность летального исхода Таблица 1.10 Вероятность летального исхода Если речь идет исключительно о риске материальных потерь, метод сравнения при оценке риска не вызывает сомнений. В этом случае можно принимать решения, оценивая лишь экономический эффект. Попыткам четко выделить допустимые границы вероятности реализации нежелательного события препятствуют следующие положения: — такого рода границы должны быть независимыми от экономических затрат, так же как аналогичная независимость должна обеспечиваться для достижения безопасности людей и материальных ценностей; — законодатель должен был бы для подобных границ принимать общее решение, не учитывающее всю специфику частных случаев; — одно лишь утверждение, что такие границы будут соблюдаться, может освободить принимающего решения от обязанности анализировать ситуацию дальше и еще больше снижать угрозу безопасности людей, а ведь при этом возможны случаи, когда ценой очень небольших затрат опасность может быть еще больше снижена, но этой возможностью пренебрегают, поскольку границы уже установлены; — утверждение, что определенные границы выдерживаются, предполагает качественное единство данных, что на самом деле недостижимо, т. к. опасность — явление многоаспектное; — ограничения допустимого риска зависят от времени и меняются с изменениями технических и экономических возможностей общества.
|
|||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 428; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.217.159 (0.012 с.) |