Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Глава 4. Решение системы линейных уравненийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Система линейных уравнений Системой m линейных уравнений с n неизвестными называется система m алгебраических уравнений первой степени вида
где – неизвестные, подлежащие определению; – числа, называемые коэффициентами при неизвестных; – числа, называемые свободными членами. Решением системы уравнений (4.1.1) называется совокупность n чисел таких, что если в каждое уравнение системы вместо неизвестных подставить эти числа ( вместо , вместо вместо ), то все уравнения обратятся в тождества. Если система линейных уравнений (4.1.1) имеет хотя бы одно решение, то она называется совместной. В противном случае система называется несовместной. Совместная система, имеющая единственное решение, называется определенной, а система, имеющая более одного решения – неопределенной. Две системы линейных уравнений называются эквивалентными, если любое решение каждой из них является одновременно решением и другой системы. Две произвольные несовместные системы считаются эквивалентными. Системе линейных уравнений (4.1.1) поставим в соответствие матрицу и расширенную матрицу , полученную присоединением к матрице А столбца свободных членов.
Методы решения системы n линейных уравнений с n неизвестными
Рассмотрим систему n линейных уравнений с n неизвестными
Определитель | A | матрицы А называется определителем системы (4.2.1). Теорема Крамера. Если определитель | A | системы (4.2.1) отличен от нуля, то система совместна и имеет единственное решение. Доказательство. Пусть система (4.2.1) совместна и – одно из ее решений. Тогда получим n тождеств:
Умножим обе части первого из равенств (4.2.2) на алгебраическое дополнение , обе части второго равенства умножим на алгебраическое дополнение и т.д. и обе части n -ого равенства – на . Складывая левые и правые части полученных выражений, придем к следующему равенству:
Коэффициент при равен определителю | A | системы (4.2.1), коэффициент при равен нулю, а правая часть равенства (4.2.3) является определителем, полученным из определителя | A | путем замены j -го столбца столбцом свободных членов. Обозначим данный определитель через
Тогда равенство (4.2.3) примет вид: , откуда
Из формулы (4.2.4) следует, что если система (4.2.1) совместна, то она обладает единственным решением.
Формулы (4.2.4) называются формулами Крамера. Непосредственной подстановкой значений , во все уравнения системы убедимся в том, что они образуют ее решение: . При , при , . Таким образом, получим . Теорема доказана. Пример. Решить систему линейных уравнений методом Крамера:
Решение. Вычислим определитель : , , , откуда Решение системы линейных уравнений с определителем | A |, отличным от нуля, можно найти с помощью обратной матрицы. Для этого запишем систему (4.2.1) в виде матричного уравнения
где . Решение матричного уравнения (4.2.5) имеет вид
Пример. Решить систему линейных уравнений с помощью обратной матрицы Решение. Вычислим для матрицы ее обратную матрицу . Определим неизвестную матрицу-столбец Х: , откуда Формулы Крамера (4.2.4) могут быть получены из выражения (4.2.6). Действительно, запишем матричное равенство в развернутом виде: . Из полученного выражения непосредственно следуют формулы Крамера: . Теорема Кронекера-Карелли Теорема. Система линейных уравнений (4.1.1) совместна тогда и только тогда, когда . Доказательство. Необходимость. Пусть система (4.1.1) совместна и пусть числа – одно из ее решений. Подставляя эти числа вместо неизвестных в систему (4.1.1), получим m тождеств, которые показывают, что последний столбец матрицы является линейной комбинацией всех остальных столбцов, взятых соответственно с коэффициентами . Всякий другой столбец матрицы входит и в матрицу А. Поэтому максимальное число линейно независимых столбцов матриц А и совпадает. Следовательно, . Достаточность. Пусть дано, что . Отсюда следует, что максимальное число линейно независимых столбцов матриц А и совпадает и равно r. Для определенности предположим, что первые r столбцов матриц А и линейно независимы, а остальные (n-r) столбцов является их линейными комбинациями. Выражая последний столбец матрицы А как линейную комбинацию первых r столбцов, получим: откуда следует, что числа являются решением системы (4.1.1), т.е. система (4.1.1) совместна. Теорема доказана. На основании теоремы Кронекера-Капелли имеем: 1. Если , то система (4.1.1) несовместна;
2. Если , то система (4.1.1) совместна. Пусть для определенности базисный минор порядка r расположен в верхнем левом углу матрицы А. Тогда первые r строк матрицы А линейно независимы, а остальные ее строки являются линейной комбинацией первых r строк. Но это означает, что первые r уравнений системы (4.1.1) линейно независимы, а остальные (m-r) ее уравнений являются их линейными комбинациями. Поэтому достаточно решить систему r уравнений; решения такой системы будут, очевидно, удовлетворять и остальным (m-r) уравнениям. При этом возможны два случая: 1. . Тогда систему, состоящую из первых r уравнений системы (4.1.1) можно решить, например, по правилу Крамера. В этом случае система имеет единственное решение, т.е. система совместна и определена; 2. . Рассмотрим первые r уравнений системы (4.1.1). Оставив в левых частях первые r неизвестных, перенесем остальные в правые части. Получим систему: Очевидно, что полученная система и, следовательно, система (4.1.1) являются совместными и неопределенными. Таким образом, если , то система (4.1.1) совместна (определенная или неопределенная), если , то система (4.1.1) несовместна. Если в системе n линейных уравнений с n неизвестными определитель системы равен нулю, то . Тогда если , то система является совместной и неопределенной. Если , то система несовместна. Теорема Кронекера-Капелли устанавливает необходимое и достаточное условие совместности системы (4.1.1), но не дает способа нахождения решения этой системы. Рассмотрим метод Жордана-Гаусса – метод решения системы m линейных уравнений с n неизвестными.
Метод Жордана-Гаусса
Метод Жордана-Гаусса основан на элементарных преобразованиях (п.3.2) строк расширенной матрицы системы (4.1.1). В результате каждого из элементарных преобразований расширенная матрица изменяется, однако системы линейных уравнений, соответствующие полученным матрицам, эквивалентны исходной системе линейных уравнений. Пусть дана система m линейных уравнений с n неизвестными. Применяя элементарные преобразования, построим эквивалентную систему специального вида. Для этого выберем в качестве первого уравнений одно из тех уравнений системы, где коэффициент при х 1 отличен от нуля. Не нарушая общности, предположим, что . Тогда первым уравнением системы будет уравнение . Умножим первое уравнение на . Затем умножим это же уравнение на , и прибавим его почленно к уравнениям системы с номерами i=2,3,…,m. После этого преобразования в уравнениях с номерами i >1 будет исключено неизвестное х 1. Первый шаг метода Жордана-Гаусса закончен. . Может случиться, что на первом шаге вместе с неизвестными х 1 будут исключены неизвестными , но найдется хотя бы одно уравнение, в котором сохранится неизвестное . Одно из таких уравнений примем в качестве второго уравнения системы. В этом случае расширенная матрица , соответствующая полученной системе, имеет вид: . Используем второе уравнение для исключения неизвестного из всех уравнений, кроме второго. После второго шага метода Жордана-Гаусса получим расширенную матрицу . Продолжая процесс, после r шагов получим матрицу , содержащую r единичных столбцов на месте первых n столбцов матрицы А (r – ранг матрицы А системы). При этом возможны три случая: 1. Если , то матрица преобразуется в матрицу Система имеет единственное решение: .
2. Если и r<n, то Система имеет бесконечное множество решений. Общее решение имеет вид: Неизвестные называются базисными. – свободными неизвестными. Свободным неизвестным можно придавать какие угодно значения, получая при этом соответствующие значения неизвестных . В результате имеем бесконечное множество частных значений. Среди частных решений системы выделим базисные решения, которые получают при равенстве нулю всех свободных неизвестных. Очевидно, что одним из базисных решений является следующее: . В общем случае число базисных решений не превышает . 3. Если , то где хотя бы один из элементов отличен от нуля. В этом случае система (4.1.1) несовместна. Таким образом, метод Жордана-Гаусса состоит из r итераций (r шагов). На каждой S -ой итерации выбирается направляющий элемент соответственно направляющие строка и столбец. С помощью элементарных преобразований столбец преобразуется в единичный с единицей в строке . Рассмотрим алгоритм произвольной итерации метода Жордана-Гаусса. Положим . Шаг 1. Сформировать множество . Шаг 2. Если , то процесс элементарных преобразований закончить. В противном случае перейти к шагу 3. Шаг 3. Если для , то процесс элементарных преобразований закончить. В противном случае найти направляющий элемент и перейти к шагу 4. Шаг 4. Разделить направляющую строку на . Шаг 5. К i -ой строке, , прибавим строку , умноженную на . Покажем, что столбец преобразуется в единичный с единицей в строке . Пусть . Элементы матрицы выражаются через элементы матрицы следующим образом:
Полагая j=k, из (4.4.1) и (4.4.3) имеем . Пример. Решить систему линейных уравнений методом Жордана-Гаусса.
Решение. Составим из данной системы расширенную матрицу Полагаем . Итерация 1. Шаг 1. . Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим третью строку на . Шаг 5. К первой, второй и четвертой строкам прибавляем третью строку, соответственно умноженную на -2, -2, -3. В результате матрица преобразуется в матрицу . Итерация 2. Шаг 1. . Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим первую строку на . Шаг 5. Ко второй, третьей и четвертой строкам прибавляем первую строку, соответственно умноженную на -4, -3, 1. Получим матрицу . Итерация 3. Шаг 1. . Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим четвертую строку на . Шаг 5. К первой, второй, третьей строкам прибавляем четвертую строку, соответственно умноженную на 0, -5, -2. Получим матрицу . Итерация 4. Шаг 1. .
Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим четвертую строку на . Шаг 5. К первой, третьей и четвертой строкам прибавляем вторую строку, соответственно умноженную на -1, 2, 0. Получим матрицу . Итерация 5. Шаг 1. . Шаг 2. , поэтому процесс элементарных преобразований закончен. На основании вида матрицы получаем единственное решение исходной системы: .
Решение. Составим расширенную матрицу . В результате итерации 1, полагая , получим матрицу После итерации 2, полагая , получим матрицу Итерация 3. Шаг 1. . Шаг 2. . Шаг 3. Так как , то процесс элементарных преобразований закончен. Матрица определяет общее решение системы: – базисные, – свободные переменные. Получим одно из базисных решений: .
Решение. Матрицы , , имеют вид:
Очевидно, что процесс элементарных преобразований следует закончить, так как . Из первой (или третьей) строки матрицы следует, что исходная система линейных уравнений несовместна. Действительно, первой строке соответствует уравнение , которое не может быть удовлетворено ни при каких значениях неизвестных . Используя метод Жордана-Гаусса, рассмотрим еще один метод вычисления обратной матрицы . Рассмотрим матричное уравнение
где , Е – единичная матрица. Очевидно, что матричное уравнение (4.4.5) имеет единственное решение . Решение матричного уравнения (4.4.5) сводится к решению n систем n линейных уравнений с n неизвестными вида
Системе линейных уравнений (4.4.6) соответствует расширенная матрица . Применяя к матрице алгоритм метода Жордана-Гаусса, получим матрицу . Покажем, что . Расширенной матрице соответствует матричное уравнение , которое имеет единственное решение Х=В. Матрица получена из матрицы методом Жордана-Гаусса. Поэтому системы линейных уравнений, соответствующие матрицам и , равносильны, т.е. имеют одно и то же решение. Отсюда следует, что , следовательно, . Таким образом, чтобы для невырожденной матрицы А вычислить обратную матрицу , необходимо составить матрицу . Методом Жордана-Гаусса в матрице преобразовать матрицу А к виду единичной матрицы Е, тогда на месте единичной матрицы Е получим обратную матрицу . Пример. Вычислить обратную матрицу для матрицы . Решение. Составим матрицу . На итерации 1, полагая , получим . На итерации 2, полагая , получим . На итерации 3, полагая , получим , откуда .
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 661; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.118.218 (0.014 с.) |