Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Оценка достоверности коэффициента корреляции

Поиск

 

Коэффициент линейной корреляции, исчисленный по выборочным данным является случайной величиной. Полученный из выборки коэффициент корреляции r является оценкой коэффициента корреляции r в генеральной совокупности. С уменьшением числа наблюдений надежность коэффициента корреляции падает. Оценка существенности (значимости) линейного коэффициента корреляции основана на сопоставлении значения r с его средней квадратической ошибкой :

,

При оценке значимости коэффициента корреляции обычно рассматриваются следующие ситуации.

1. Если число наблюдений достаточно велико (обычно свыше 30), а значение коэффициента корреляции не превышает 0.9, распределение коэффициента корреляции r можно считать приближенно нормальным со средней квадратической ошибкой

,

 

При достаточно большом числе наблюдений r должен превышать свою среднюю ошибку не менее, чем в три раза: . Если это неравенство не выполняется, то существование связи между признаками нельзя считать доказанным.

Задавшись определенной вероятностью, можно построить доверительные границы r:

Так, например, при вероятности 0,95, для которой t = 1,96, доверительные границы составят

,

При вероятности 0,997, для которой коэффициент доверия t = 3, доверительные границы составят

 

Поскольку значение r не может превышать единицу, то в случае, если > 1, следует указать только нижний предел, то есть утверждать, что реальный r не меньше, чем .

2. Для малого объема выборки, с распределением r далеким от нормального, применяются другие методы оценки значимости коэффициента корреляции. При небольшом числе наблюдений (n < 30), средняя ошибка линейного коэффициента корреляции находится по формуле:

а значимость проверяется на основе t критерия Стьюдента. При этом выдвигается гипотеза о равенстве коэффициента корреляции нулю, то есть об отсутствии связи между y и x в генеральной совокупности. Для этого используется статистика:

 

расчетное значение которой сопоставляется с табличным, из таблиц распределения Стьюдента. Если нулевая гипотеза верна, то есть r =0, то распределение t - критерия подчиняется закону распределения Стьюдента с n-2 степенями свободы и принятым уровнем значимости (обычно 0,05). В каждом конкретном случае по таблице распределения t -критерия Стьюдента находится табличное (критическое) значение t, которое допустимо при справедливости нулевой гипотезы, и с ним сравнивается фактическое (расчетное) значение t. Если t расч. > t табл ., то нулевая гипотеза отклоняется и линейный коэффициент считается значимым, а связь между x и y – существенной. И наоборот.

3. При малом числе наблюдений в выборке и высоком коэффициенте корреляции (распределение r отличается от нормального) для проверки гипотезы о наличии корреляционной связи, а также построения доверительного интервала применяется z-преобразование Фишера.

Для этого рассчитывается величина

 

Распределение z приближается к нормальному. Вариация z выражается формулой

 

Рассчитаем z критерий для примера 1, поскольку в этом случае мы имеем небольшое число наблюдений и высокий коэффициент корреляции.

 

.

Чтобы не вычислять значения логарифмов, можно воспользоваться специальными таблицами Z-преобразований (Ефимова М.Р. стр. 402, Шмойлова Р.А. стр.446, Елисеева И.И. стр.473). Находим, что коэффициенту корреляции 0,94 соответствует Z=1,74.

Находим

Отношение Z к средней квадратической ошибке равно 3. Таким образом, мы можем полагать действительное наличие связи между величиной выпуска продукции и расходом электроэнергии для всей совокупности предприятий.

 

6.4. Ранговая корреляция

 

Если n вариантов рядарасположены в соответствии с возрастанием или убыванием признака х, то говорят, что объекты ранжированы по этому признаку. Ранг для хi указывает место, которое занимает i -е значение признака среди других n значений признака х (i=1,2,..n).

Например, при исследовании рынка можно задаться целью выяснения предпочтений потребителей при выборе товара (при покупке акций, мороженного, водки и т.п.), таким образом, чтобы они распределили товар в порядке возрастания (или убывания) своих потребительских предпочтений. Если имеется два набора ранжированных данных, то можно установить степень линейной зависимости между ними. Предположим имеется 5 продуктов, которые ранжированы по порядку предпочтений от 1 до 5 в соответствии с двумя характеристиками А и В.

Характеристики для ранжирования Продукты V W X Y Z
A B 2 5 1 3 4 1 3 2 4 5

Для определения наличия взаимосвязи между ранговыми оценками используется коэффициент ранговой корреляции Спирмена. Его расчет основан на различиях между рангами.

Обозначим D= ранг A – ранг B

Коэффициент Спирмена равен: ,

где n – число пар ранжированных наблюдений.

В нашем примере мы имеем пять пар рангов, следовательно, n = 5. Cумма D2 равна:

(2-1)2 + (5-3)2 + (1-2)2 + (3-4)2 + (4-5)2=1+4+1+1+1=8

Коэффициент Спирмена равен:

То есть мы нашли достаточно сильную линейную связь. Коэффициент Спирмена изменяется в интервале от [-1; 1] и интерпретируется так же как и коэффициент Пирсона. Разница лишь в том. что он вычисляется для ранжированных данных.

Значимость коэффициента Спирмена проверяется на основе t критерия Стьюдента по формуле: . (12).

Значение коэффициента считается существенным, если tрасч. > tкрит. (a; k = n-2).



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 1148; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.54.118 (0.006 с.)