Расчёт коэффициентов уравнений линейной регрессии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчёт коэффициентов уравнений линейной регрессии

Поиск

 

Как уже было сказано выше, в случае линейной зависимости уравнение регрессии является уравнением прямой линии.

Различают

У = ау/х +bу/х×Х - прямое уравнение регрессии;

Х = ах/у+bх/у ×Y - обратное уравнение регрессии.

Здесь а и b – коэффициенты, или параметры, которые определяются по формулам. Значение коэффициента b вычисляется

Из формул видно, что коэффициенты регрессии bу/х и bх/у имеют тот же знак, что и коэффициент корреляции, размерность, равную отношению размерностей изучаемых показателей Х и У, и связаны соотношением:

Для вычисления коэффициента а достаточно подставить в уравнения регрессии средние значения коррелируемых переменных

График теоретических линий регрессии (рис. 17) имеет вид:

 

Рис 17. Теоретические линии регрессии

 

Из приведённых выше формул легко доказать, что угловые коэффициенты прямых регрессии равны соответственно

Так как , то . Это означает, что прямая регрессии Y на Х имеет меньший наклон к оси абсцисс, чем прямая регрессии Х на Y.

Чем ближе к единице, тем меньше угол между прямыми регрессии. Эти прямые сливаются только тогда, когда .

При прямые регрессии описываются уравнениями , .

Таким образом, уравнения регрессии позволяют:

· определить, насколько изменяется одна величина относительно другой;

· прогнозировать результаты.


 

Методика выполнения расчётно-графической работы №2

 

Расчётно-графическая работа содержит 4 раздела.

 

В первом разделе:

3. Формулируется тема;

4. Формулируется цель работы.

 

Во втором разделе:

3. Формулируется условие задачи;

4. Заполняется таблица исходных данных выборки.

 

В третьем разделе:

4. Результаты измерений представляются в виде вариационного ряда;

5. Даётся графическое представление вариационного ряда.

6. Формулируется вывод.

 

В четвёртом разделе:

3. Рассчитываются основные статистические характеристики ряда измерений;

4. По итогам расчётов формулируется вывод.

 

Оформление работы:

3. Работа выполняется в отдельной тетради или на форматных листах.

4. Титульный лист заполняется по образцу.

 

 


Российский Государственный Университет

физической культуры, спорта, молодёжи и туризма

 

Кафедра естественнонаучных дисциплин

 

 

Корреляционный и регрессионный анализы

Расчётно-графическая работа №2

по курсу математики

 

Выполнил: студент 1 к. 1 пот. 1гр.

Иванов С.М.

 

Преподаватель:

доц. кафедры ЕНД и ИТ

(Ф.И.О.)

Москва – 2012

 

 

(Пример оформления титульного листа)


Пример выполнения расчётно-графической работы №2.

 

Тема работы: Корреляционный и регрессионный анализы.

Цель работы: Определить взаимосвязь показателей двух выборок.

 

Ход выполнения работы:

1. Придумать две выборки из своего вида спорта с одинаковым объемом n.

2. Нарисовать корреляционное поле, сделать предварительный вывод.

3. Рассчитать коэффициент корреляции Бравэ-Пирсона и сделать вывод.

4. Определить достоверность коэффициента корреляции и сделать окончательный вывод.

5. Рассчитать коэффициент детерминации и сделать вывод о степени взаимосвязи показателей двух выборок.

6. Рассчитать коэффициенты прямого и обратного уравнений регрессии.

7. Построить теоретические линии регрессии на корреляционном поле и показать точку их пересечения.

 

1. Условие задачи: У группы спортсменов определяли результаты в беге на 100 м с барьерами Xi (с) и прыжках в длину Yi (м) (табл.). Проверить, существует ли корреляционная связь между исследуемыми признаками и определить достоверность коэффициента корреляции.

 

Таблица исходных данных выборки: Результаты приведены в таблице исходных данных.

Таблица 6

Результаты бега и прыжка

 

№ п/п                  
Xi, с 13,68 13,34 13,75 13,51 13,53 13,7 13,45 13,72 13,61
Yi, м 6,35 6,83 6,25 6,38 6,42 6,35 6,51 6,06 6,22
№ п/п                  
Xi, с 13,84 13,91 13,46 13,5 13,6 13,35 13,42 13,8 13,5
Yi, м 6,20 6,00 6,50 6,65 6,55 6,75 6,60 6,18 6,55

 


Решение:

2. Построим корреляционное поле (диаграмму рассеяния) и сделаем предварительный вывод относительно связи между исследуемыми признаками.

 

Рис 18. Корреляционное поле

 

 

Предварительный вывод:

Связь между показателями результатов в беге на 100 м с барьерами Xi (с) и прыжками в длину Yi (см):

· линейная;

· отрицательная;

· сильная.

3. Рассчитаем парный линейный коэффициент корреляции Бравэ – Пирсона, предварительно рассчитав основные статистические показатели двух выборок. Для их расчёта составим таблицу, в которой предпоследний и последний столбцы необходимы для расчёта стандартных отклонений, если они неизвестны. Для нашего примера эти значения рассчитаны в первой расчётно-графической работе, но для наглядности покажем расчёт дополнительно.

 


Таблица 7

Вспомогательная таблица для расчета коэффициента

корреляции Бравэ – Пирсона

 

Xi, с Yi, см
  13,68 6,35 0,09 -0,06 -0,005 0,0081 0,0036
  13,34 6,83 -0,25 0,42 -0,105 0,0625 0,18
  13,75 6,25 0,16 -0,16 -0,03 0,0256 0,0256
  13,51 6,38 -0,08 -0,03 0,0024 0,0064 0,0009
  13,53 6,42 -0,06 0,01 -0,0006 0,0036 0,0001
  13,7 6,35 0,11 -0,06 -0,0066 0,0121 0,0036
  13,45 6,51 -0,14 0,1 -0,014 0,0196 0,01
  13,72 6,06 0,13 -0,35 -0,0455 0,0169 0,1225
  13,61 6,22 0,02 -0,19 -0,004 0,0004 0,0361
  13,84 6,20 0,25 -0,21 -0,0525 0,0625 0,0441
  13,91 6,00 0,32 -0,41 -0,1312 0,1024 0,1681
  13,46 6,50 -0,13 0,09 -0,0117 0,0169 0,0081
  13,5 6,65 -0,09 0,24 -0,0216 0,0081 0,0576
  13,6 6,55 0,01 0,14 0,0014 0,0001 0,0196
  13,35 6,75 -0,24 0,34 -0,0816 0,0576 0,1156
  13,42 6,60 -0,17 0,19 -0,0323 0,0289 0,0361
  13,8 6,18 0,21 -0,23 -0,0483 0,0441 0,0529
  13,5 6,55 -0,09 0,14 -0,0126 0,0081 0,0196
n= 18 13,59 6,41     ∑=-0,6015   ∑=0,4839 ∑=0,9041

 

sx = ,

 

 

sy = ,

 

.

 

Полученное значение коэффициента корреляции позволяет подтвердить предварительный вывод и сделать окончательное заключение – связь между исследуемыми признаками:

· линейная;

· отрицательная;

· сильная.

4. Определим достоверность коэффициента корреляции.

Предположим, что связь между результатом в беге на 100 м и прыжком в длину отсутствует (Но: r= 0).

· .

· Находим = 2,12 для α = 0,05 и n = n - 2 = 16.

· tрасчет > tтабл (19,6 > 2,12).

Вывод: существует сильная, отрицательная статистически достоверная (р =0,95) связь между бегом с препятствиями на дистанцию 100 м и прыжком в длину. Это означает, что с улучшением результата в прыжке в длину уменьшается время пробега дистанции 100 м.

5. Вычислим коэффициент детерминации:

.

Следовательно, только 96% взаимосвязи результатов в беге на 100 м с барьерами и в прыжке в длину объясняется их взаимовлиянием, а остальная часть, т. е. 4% объясняется влиянием других неучтённых факторов.

 

6. Рассчитаем коэффициенты прямого и обратного уравнений регрессии, воспользовавшись формулами, подставим значения рассчитанных коэффициентов в соответствующую формулу и запишем прямое и обратное уравнения регрессии:

 

Y = а1 + b1×Х - прямое уравнение регрессии;

 

Х = а2 + b2 ×Y - обратное уравнение регрессии.

 

Воспользуемся результатами расчёта, приведёнными выше:

 

sx = ; sy = ; ; 13,59; 6,4,

 

Рассчитаем коэффициент b1, воспользовавшись формулой:

 

 

Для расчета коэффициента а1 подставим в прямое уравнение регрессии вместо b1 рассчитанное значение, а вместо Х и Y средние арифметические значения двух выборок из таблицы:

 

 

Подставим полученные значения коэффициентов а1 и b1 в прямое уравнение регрессии и запишем уравнение прямой линии:

 

Y = 22 - 1,15 ×Х

 

Рассчитаем коэффициент b2, воспользовавшись формулой:

 

Для расчета коэффициента а2 подставим в прямое уравнение регрессии вместо b2 рассчитанное значение, а вместо Х и Y средние арифметические значения двух выборок из таблицы:

 

 

Подставим полученные значения коэффициентов а1 и b1 в прямое уравнение регрессии и запишем уравнение прямой линии:

 

Х = 18,92 - 0,83 ×Y

 

Таким образом, мы получили прямое и обратное уравнения регрессии:

 

Y = 22 - 1,15 ×Х - прямое уравнение регрессии;

Х = 18,92 - 0,83 ×Y - обратное уравнение регрессии.

 

Для проверки правильности расчётов достаточно подставить в прямое уравнение среднее значение и определить значение Y. Полученное значение Y должно быть близким или равным среднему значению .

Y = 22 - 1,15 × = 22 - 1,15 × 13,59 = 6,4 = .

 

При подстановке в обратное уравнение регрессии среднего значения , полученное значение Х должно быть близким или равным среднему значению .

 

Х = 18,92 - 0,83 × = 18,92 - 0,83 × 6,4 = 13,6 = .

7. Построим линии регрессии на корреляционном поле.

Для графического построения теоретических линий регрессии, как и для построения любой прямой, необходимо иметь две точки из диапазона значений Х и Y.

Причём, в прямом уравнении регрессии независимая переменная Х, а зависимая Y, а в обратном – независимая переменная Y, а зависимая Х.

 

 

Y = 22 - 1,15 ×Х

 

X 13,42 13,8
Y 6,57 6,13

Х = 18,92 - 0,83 ×Y

 

Y 6,2 6,6
X 13,77 13,44

Координатами точки пересечения линий прямого и обратного уравнений регрессии являются значения средних арифметических двух выборок (с учётом погрешностей округлений при приближённых расчётах).

 

Вывод: зная результат бега с препятствиями на дистанцию 100 м, по прямому уравнению регрессии, можно теоретически определить результат прыжка в длину; и наоборот, зная результат прыжка в длину по обратному уравнению регрессии, можно определить результат бега с препятствиями.

 


ПРИЛОЖЕНИЕ

Таблица 1
Критические значения t -критерия Стьюдента
Число степеней свободы ν Уровень значимости a для двусторонней критической области
0,1 0,05 0,01 0,005 0,001
¥ 2,9200 2,1318 1,9432 1,8595 1,8125 1,7823 1,7613 1,7459 1,7341 1,7247 1,7171 1,7109 1,7056 1,7011 1,6973 1,6939 1,6909 1,6883 1,6860 1,6839 1,6759 1,6706 1,6669 1,6641 1,6620 1,6602 1,6588 1,6576 1,6449 4,3027 2,7765 2,4469 2,3060 2,2281 2,1788 2,1448 2,1199 2,1009 2,0860 2,0739 2,0639 2,0555 2,0484 2,0423 2,0369 2,0322 2,0281 2,0244 2,0211 2,0086 2,0003 1,9944 1,9901 1,9867 1,9840 1,9818 1,9799 1,9600 9,9250 4,6041 3,7074 3,3554 3,1693 3,0545 2,9768 2,9208 2,8784 2,8453 2,8188 2,7970 2,7787 2,7633 2,7500 2,7385 2,7284 2,7195 2,7116 2,7045 2,6778 2,6603 2,6479 2,6387 2,6316 2,6259 2,6213 2,6174 2,5758 14,0892 5,5975 4,3168 3,8325 3,5814 3,4284 3,3257 3,2520 3,1966 3,1534 3,1188 3,0905 3,0669 3,0470 3,0298 3,0149 3,0020 2,9905 2,9803 2,9712 2,9370 2,9146 2,8987 2,8870 2,8779 2,8707 2,8648 2,8599 2,8070 31,5998 8,6101 5,9587 5,0414 4,5868 4,3178 4,1403 4,0149 3,9217 3,8496 3,7922 3,7454 3,7067 3,6739 3,6460 3,6218 3,6007 3,5821 3,5657 3,5510 3,4960 3,4602 3,4350 3,4164 3,4019 3,3905 3,3811 3,3734 3,2905
Число степеней свободы ν 0,05 0,025 0,005 0,0025 0,0005
Уровень значимости a для односторонней критической области

 

 


Таблица 2
Критические значения F -критерия Фишера-Снедекора (ν1 - число степеней свободы большей дисперсии; ν2 - число степеней свободы меньшей дисперсии)
Уровень значимости a = 0,05
ν2 ν1
                                   
  6,39 5,19 4,53 4,12 3,84 3,63 3,48 3,36 3,26 3,11 3,01 2,87 2,78 2,69 2,61 2,56 2,50 2,46 6,26 5,05 4,39 3,97 3,69 3,48 3,33 3,20 3,11 2,96 2,85 2,71 2,62 2,53 2,45 2,40 2,35 2,30 6,16 4,95 4,28 3,87 3,58 3,37 3,22 3,09 3,00 2,85 2,74 2,60 2,51 2,42 2,34 2,29 2,23 2,19 6,09 4,88 4,21 3,79 3,50 3,29 3,14 3,01 2,92 2,77 2,66 2,52 2,43 2,34 2,25 2,20 2,14 2,10 6,04 4,82 4,15 3,73 3,44 3,23 3,07 2,95 2,85 2,70 2,59 2,45 2,36 2,27 2,18 2,13 2,07 2,03 6,00 4,78 4,10 3,68 3,39 3,18 3,02 2,90 2,80 2,65 2,54 2,40 2,30 2,21 2,12 2,07 2,01 1,97 5,96 4,74 4,06 3,63 3,34 3,13 2,97 2,86 2,76 2,60 2,49 2,35 2,26 2,16 2,07 2,02 1,97 1,92 5,93 4,70 4,03 3,60 3,31 3,10 2,94 2,82 2,72 2,56 2,45 2,31 2,22 2,12 2,04 1,98 1,93 1,88 5,91 4,68 4,00 3,57 3,28 3,07 2,91 2,79 2,69 2,53 2,42 2,28 2,18 2,09 2,00 1,95 1,89 1,85 5,87 4,64 3,96 3,52 3,23 3,02 2,86 2,74 2,64 2,48 2,37 2,23 2,13 2,04 1,95 1,90 1,84 1,79 5,84 4,60 3,92 3,49 3,20 2,98 2,82 2,70 2,60 2,44 2,33 2,18 2,09 1,99 1,90 1,85 1,79 1,75 5,80 4,56 3,87 3,44 3,15 2,93 2,77 2,65 2,54 2,39 2,28 2,12 2,02 1,93 1,84 1,78 1,72 1,68 5,74 4,50 3,81 3,38 3,08 2,86 2,70 2,57 2,46 2,31 2,20 2,04 1,94 1,84 1,74 1,69 1,62 1,57 5,71 4,46 3,77 3,34 3,05 2,82 2,67 2,53 2,42 2,27 2,16 1,99 1,89 1,79 1,69 1,63 1,56 1,51 5,70 4,44 3,75 3,32 3,03 2,80 2,64 2,50 2,40 2,24 2,13 1,96 1,86 1,76 1,66 1,60 1,53 1,48 5,68 4,42 3,72 3,29 3,00 2,77 2,61 2,47 2,36 2,21 2,09 1,92 1,82 1,72 1,61 1,55 1,47 1,42 5,66 4,40 3,71 3,28 2,98 2,76 2,59 2,45 2,35 2,19 2,07 1,90 1,80 1,69 1,59 1,52 1,45 1,39
                                     

 

 



Поделиться:


Последнее изменение этой страницы: 2016-06-19; просмотров: 1801; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.10.9 (0.012 с.)