Основные статистические характеристики ряда измерений 





Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные статистические характеристики ряда измерений



 

К основным статистическим характеристикам ряда измерений (вариацион­ного ряда) относятся характеристики положения(средние характе­ристики, или центральная тенденция выборки); характеристики рассеяния(ва­риации, или колеблемости) и характеристики формыраспределения.

К характеристикам положения относятся среднее арифметическое значе­ние (среднее значение), мода и медиана.

К характеристикам рассеяния (вариации, или колеблемости) относятся: размах вариации, дисперсия, среднее квадратическое (стандартное) отклонение, ошибка средней арифметической (ошибка средней), коэффициент вариации и др.

К характеристикам формы относятся коэффициент асимметрии, мера ско­шенности и эксцесс.

Далее приводятся формулы для расчёта основных статистических характеристик, причём предлагаются расчётные формулы как для несгруппированных данных, так и для данных, сгруппированных в интервалы.

 

 

Характеристики положения

Среднее арифметическое значение

Среднее арифметическое значение – одна из основных характеристик вы­борки.

Она, как и другие числовые характеристики выборки, может вычисляться как по необработанным первичным данным, так и по результатам группировки этих данных.

Точность вычисления по необработанным данным выше, но процесс вычисления оказывается трудоёмким при большом объёме выборки.

Для несгруппированных данных среднее арифметическое определяется по формуле:

,

где n- объем выборки, х1, х2, ... хn - результаты измерений.

Для сгруппированных данных:

,

где n- объем выборки, k – число интервалов группировки, ni – частоты интервалов, xi – срединные значения интервалов.

 

Мода

Определение 1. Мода - наиболее часто встречающаяся величина в данных вы­борки. Обозначается Мо и определяетсяпо формуле:

,

где - нижняя граница модального интервала, - ширина интервала группи­ровки, - частота модального интервала, - частота интервала, предшествую­щего модальному, - частота интервала, последующего за модаль­ным.

Определение 2. Модой Мо дискретной случайной величины называется наиболее вероятное её значение.

Геометрически моду можно интерпретировать как абсциссу точки максимума кривой распределения. Бывают двухмодальныеи многомодальные распределения. Встречаются распределения, которые имеют минимум, но не имеют максимума. Такие распределения называются антимодальными.

Определение. Модальныминтервалом называется интервал группировки с наибольшей частотой.

Медиана

Определение. Медиана - результат измерения, который находится в сере­дине ранжированного ряда, иначе говоря, медианой называется значение признака Х, когда одна половина значений экспериментальных данных меньше её, а вторая половина – больше, обозначается Ме.

Когда объем выборки n - четное число, т. е. результатов измерений четное количество, то для определения медианы рассчитывается среднее значение двух показателей выборки, находящихся в середине ранжированного ряда.

Для данных, сгруппированных в интервалы, медиану определяют по фор­муле:

,

где - нижняя граница медианного интервала; ширина интервала группи­ровки, 0,5n – половина объёма выборки, - частота медианного интервала, - накопленная частота интервала, предшествующего медианному.

Определение. Медианным интервалом называется тот интервал, в котором накопленная частота впервые окажется больше половины объёма выборки (n/2) или накопленная частость окажется больше 0,5.

Численные значения среднего, моды и медианы отличаются, когда имеет место несимметричная форма эмпирического распределения.

 

Характеристики рассеяния результатов измерений

Для математико-статистического анализа результатов выборки знать только характеристики положения недостаточно. Одна и та же величина среднего значе­ния может характеризовать совершенно различные выборки.

Поэтому кроме них в статистике рассматривают также характеристики рассеяния (вариации, или колеблемости) результатов.

 

Размах вариации

Определение. Размахом вариации называется разница между наибольшим и наименьшим результатами выборки, обозначается R и определяется

R=Xmax - Xmin .

Информативность этого показателя невелика, хотя при малых объёмах вы­борки по размаху легко оценить разницу между лучшим и худшим результатами спортсменов.

Дисперсия

Определение. Дисперсиейназывается средний квадрат отклонения значений признака от среднего арифметического.

Для несгруппированных данных дисперсия определяется по формуле

s2 = , (1)

 

где Хi – значение признака, - среднее арифметическое.

Для данных, сгруппированных в интервалы, дисперсия определяется по формуле

,

где хi – среднее значение i интервала группировки, ni – частоты интервалов.

Для упрощения расчётов и во избежание погрешностей вычисления при округ­лении результатов (особенно при увеличении объёма выборки) используются также другие формулы для определения дисперсии. Если среднее арифметическое уже вычислено, то для несгруппированных данных используется следующая фор­мула:

 

s2 = ,

для сгруппированных данных:

.

 

Эти формулы получаются из предыдущих раскрытием квадрата разности под знаком суммы.

В тех случаях, когда среднее арифметическое и дисперсия вычисляются од­новременно, используются формулы:

для несгруппированных данных:

s2 = ,

для сгруппированных данных:

 

.

 

3. Среднее квадратическое(стандартное)отклонение

Определение. Среднее квадратическое(стандартное) отклонение характе­ризует степень отклонения результатов от среднего значения в абсолютных единицах, т. к. в отличие от дисперсии имеет те же единицы измерения, что и результаты измерения. Иначе говоря, стандартное отклонение показывает плотность распределения результатов в группе около среднего значения, или однородность группы.

Для несгруппированных данных стандартное отклонение можно определить по формулам

 

s = ,

 

s = или s = .

 

 

Для данных, сгруппированных в интервалы, стандартное отклонение определяется по формулам:

 

 

,

 

или .

 

 





Последнее изменение этой страницы: 2016-06-19; просмотров: 3287; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.165.57.161 (0.006 с.)